Juha E Ã-hman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5550325/publications.pdf Version: 2024-02-01

ΙΠΗΛ Ε Δ-ΗΜΛΝ

#	Article	IF	CITATIONS
1	Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nature Genetics, 2008, 40, 1472-1477.	9.4	247
2	Timing of operation for ruptured supratentorial aneurysms: a prospective randomized study. Journal of Neurosurgery, 1989, 70, 55-60.	0.9	232
3	A Prospective Biopsychosocial Study of the Persistent Post-Concussion Symptoms following Mild Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 534-547.	1.7	201
4	Adipose Stem Cells Used to Reconstruct 13 Cases With Cranio-Maxillofacial Hard-Tissue Defects. Stem Cells Translational Medicine, 2014, 3, 530-540.	1.6	164
5	Cranioplasty With Adipose-Derived Stem Cells and Biomaterial: A Novel Method for Cranial Reconstruction. Neurosurgery, 2011, 68, 1535-1540.	0.6	163
6	Recovery from Mild Traumatic Brain Injury in Previously Healthy Adults. Journal of Neurotrauma, 2016, 33, 766-776.	1.7	143
7	The Value of the "Worst―Computed Tomographic Scan in Clinical Studies of Moderate and Severe Head Injury. Neurosurgery, 2000, 46, 70-77.	0.6	136
8	Intensive care management of head-injured patients in Europe: a survey from the European Brain Injury Consortium. Intensive Care Medicine, 2001, 27, 400-406.	3.9	129
9	Complement activation in the central nervous system following blood-brain barrier damage in man. Annals of Neurology, 1996, 40, 587-596.	2.8	125
10	Routine Cerebral Angiography after Surgery for Saccular Aneurysms: Is It Worth It?. Neurosurgery, 2004, 55, 1015-1024.	0.6	105
11	Persistent symptoms in mild to moderate traumatic brain injury associated with executive dysfunction. Journal of Clinical and Experimental Neuropsychology, 2010, 32, 767-774.	0.8	104
12	Traumatic Subarachnoid Hemorrhage: Demographic and Clinical Study of 750 Patients from the European Brain Injury Consortium Survey of Head Injuries. Neurosurgery, 2002, 50, 261-269.	0.6	101
13	The incidence of chronic subdural hematomas from 1990 to 2015 in a defined Finnish population. Journal of Neurosurgery, 2020, 132, 1147-1157.	0.9	86
14	Hypertension as a Risk Factor for Epilepsy after Aneurysmal Subarachnoid Hemorrhage and Surgery. Neurosurgery, 1990, 27, 578-581.	0.6	79
15	Resilience Is Associated with Outcome from Mild Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 942-949.	1.7	72
16	Acute mild traumatic brain injury is not associated with white matter change on diffusion tensor imaging. Brain, 2014, 137, 1876-1882.	3.7	70
17	Chronic subdural hematoma—incidence, complications, and financial impact. Acta Neurochirurgica, 2020, 162, 2033-2043.	0.9	70
18	Psychometric Properties of the Finnish Version of the Resilience Scale and its Short Version. Psychology, Community & Health, 2013, 2, 1-10.	0.7	69

Juha E ×hman

#	Article	lF	CITATIONS
19	Immediate effects of deep brain stimulation of anterior thalamic nuclei on executive functions and emotion–attention interaction in humans. Journal of Clinical and Experimental Neuropsychology, 2014, 36, 540-550.	0.8	68
20	Return to Work Following Mild Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 2014, 29, 443-450.	1.0	63
21	Texture analysis of MR images of patients with Mild Traumatic Brain Injury. BMC Medical Imaging, 2010, 10, 8.	1.4	59
22	The connection between ruptured cerebral aneurysms and odontogenic bacteria. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1214-1218.	0.9	59
23	Increased distractibility in closed head injury as revealed by event-related potentials. NeuroReport, 2000, 11, 1463-1468.	0.6	54
24	Repeatability and variation of region-of-interest methods using quantitative diffusion tensor MR imaging of the brain. BMC Medical Imaging, 2012, 12, 30.	1.4	54
25	Assessing the State of Chronic Spinal Cord Injury Using Diffusion Tensor Imaging. Journal of Neurotrauma, 2013, 30, 1587-1595.	1.7	54
26	Sport concussion assessment tool – 3rd edition – normative reference values for professional ice hockey players. Journal of Science and Medicine in Sport, 2016, 19, 636-641.	0.6	54
27	Biopsychosocial Outcome after Uncomplicated Mild Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 108-124.	1.7	52
28	Diffusion tensor imaging of the brain in a healthy adult population: Normative values and measurement reproducibility at 3 T and 1.5 T. Acta Radiologica, 2010, 51, 800-807.	0.5	51
29	Who Gets Recruited in Mild Traumatic Brain Injury Research?. Journal of Neurotrauma, 2013, 30, 11-16.	1.7	51
30	Basal Brain Injury in Aneurysm Surgery. Neurosurgery, 2000, 46, 1070-1076.	0.6	48
31	Cost–utility analysis of routine neurosurgical spinal surgery. Journal of Neurosurgery: Spine, 2006, 5, 204-209.	0.9	46
32	Mild Traumatic Brain Injury. Academic Radiology, 2010, 17, 1096-1102.	1.3	42
33	Cranioplasty with Adipose-Derived Stem Cells, Beta-Tricalcium Phosphate Granules and Supporting Mesh: Six-Year Clinical Follow-Up Results. Stem Cells Translational Medicine, 2017, 6, 1576-1582.	1.6	40
34	Enhanced Attention Capture by Emotional Stimuli in Mild Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 272-279.	1.7	39
35	Assessment of mild traumatic brain injury with the King-Devick Test® in an emergency department sample. Brain Injury, 2014, 28, 1590-1593.	0.6	38
36	Characterizing the type and location of intracranial abnormalities in mild traumatic brain injury. Journal of Neurosurgery, 2018, 129, 1588-1597.	0.9	38

Јина E ×нмал

#	Article	IF	CITATIONS
37	Successful management of superâ€refractory status epilepticus with thalamic deep brain stimulation. Annals of Neurology, 2017, 81, 142-146.	2.8	36
38	Human anterior thalamic nuclei are involved in emotion–attention interaction. Neuropsychologia, 2015, 78, 88-94.	0.7	35
39	Bacterial DNA findings in ruptured and unruptured intracranial aneurysms. Acta Odontologica Scandinavica, 2016, 74, 315-320.	0.9	35
40	Cost-Effectiveness Analysis of Nimodipine Treatment after Aneurysmal Subarachnoid Hemorrhage and Surgery. Neurosurgery, 1999, 45, 780-785.	0.6	34
41	A multicentre, prospective, randomized, controlled study to evaluate the use of a fibrin sealant as an adjunct to sutured dural repair. British Journal of Neurosurgery, 2015, 29, 11-17.	0.4	34
42	Causal Evidence from Humans for the Role of Mediodorsal Nucleus of the Thalamus in Working Memory. Journal of Cognitive Neuroscience, 2017, 29, 2090-2102.	1.1	34
43	Long-term excess mortality after chronic subdural hematoma. Acta Neurochirurgica, 2020, 162, 1467-1478.	0.9	34
44	Sport Concussion Assessment Tool 2 in a Civilian Trauma Sample with Mild Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 728-738.	1.7	31
45	Imaging of Anterior Nucleus of Thalamus Using 1.5T MRI for Deep Brain Stimulation Targeting in Refractory Epilepsy. Neuromodulation, 2016, 19, 812-817.	0.4	30
46	Disconnection between Periodic Leg Movements and Cortical Arousals in Spinal Cord Injury. Journal of Clinical Sleep Medicine, 2013, 09, 1207-1209.	1.4	29
47	Resilience Is Associated With Fatigue After Mild Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 2015, 30, E24-E32.	1.0	27
48	Serum Neurofilament Light Is Elevated Differentially in Older Adults with Uncomplicated Mild Traumatic Brain Injuries. Journal of Neurotrauma, 2019, 36, 2400-2406.	1.7	27
49	Semantic processing in comatose patients with intact temporal lobes as reflected by the N400 event-related potential. Neuroscience Letters, 2010, 474, 88-92.	1.0	24
50	Long term outcome after subarachnoid haemorrhage of unknown aetiology. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1264-1266.	0.9	24
51	Who Gets Head Trauma or Recruited in Mild Traumatic Brain Injury Research?. Journal of Neurotrauma, 2016, 33, 232-241.	1.7	24
52	To exclude or not to exclude: White matter hyperintensities in diffusion tensor imaging research. Brain Injury, 2011, 25, 1325-1332.	0.6	22
53	Head injuries and the risk of concurrent cervical spine fractures. Acta Neurochirurgica, 2017, 159, 907-914.	0.9	22
54	Diffusion tensor imaging of the cervical spinal cord in healthy adult population: normative values and measurement reproducibility at 3T MRI. Acta Radiologica, 2014, 55, 478-485.	0.5	21

Juha E ×hman

#	Article	IF	CITATIONS
55	IMPORTANCE OF SCREENING LOGS IN CLINICAL TRIALS FOR SEVERE TRAUMATIC BRAIN INJURY. Neurosurgery, 2008, 62, 1321-1329.	0.6	20
56	Reliability, validity and clinical usefulness of the BNI fatigue scale in mild traumatic brain injury. Brain Injury, 2012, 26, 972-978.	0.6	18
57	Long-term excess mortality of patients with treated and untreated unruptured intracranial aneurysms. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 888-892.	0.9	18
58	Spinal cord injury induces widespread chronic changes in cerebral white matter. Human Brain Mapping, 2017, 38, 3637-3647.	1.9	18
59	Interpreting change on the SCAT3 in professional ice hockey players. Journal of Science and Medicine in Sport, 2017, 20, 424-431.	0.6	18
60	Acute Assessment of Brain Injuries in Ground-Level Falls. Journal of Head Trauma Rehabilitation, 2013, 28, 89-97.	1.0	17
61	Increased plasma UCH-L1 after aneurysmal subarachnoid hemorrhage is associated with unfavorable neurological outcome. Journal of the Neurological Sciences, 2016, 361, 144-149.	0.3	15
62	Fatal cervical spine injuries: a Finnish nationwide register-based epidemiologic study on data from 1987 to 2010. Spine Journal, 2016, 16, 918-926.	0.6	15
63	Sport Concussion Assessment Tool: Interpreting day-of-injury scores in professional ice hockey players. Journal of Science and Medicine in Sport, 2018, 21, 794-799.	0.6	15
64	The developing management of esthesioneuroblastoma: a single institution experience. European Archives of Oto-Rhino-Laryngology, 2012, 269, 213-221.	0.8	14
65	Time-courses of plasma IL-6 and HMGB-1 reflect initial severity of clinical presentation but do not predict poor neurologic outcome following subarachnoid hemorrhage. ENeurologicalSci, 2017, 6, 55-62.	0.5	14
66	SURVIVAL AND OUTCOME OF NEUROSURGICAL PATIENTS REQUIRING VENTILATORY SUPPORT AFTER INTENSIVE CARE UNIT STAY. Neurosurgery, 2009, 65, 530-538.	0.6	13
67	Necessity of monitoring after negative head CT in acute head injury. Injury, 2014, 45, 1340-1344.	0.7	10
68	New European Directive on clinical trials. Lancet, The, 2003, 361, 1473.	6.3	9
69	New European directive on clinical trials: implications for traumatic head injury research. Intensive Care Medicine, 2004, 30, 517-518.	3.9	8
70	Clinical correlates of retrograde amnesia in mild traumatic brain injury. Brain Injury, 2015, 29, 565-572.	0.6	8
71	Preexisting conditions in older adults with mild traumatic brain injuries. Brain Injury, 2021, 35, 1607-1615.	0.6	7
72	Reliability of the freehand region-of-interest method in quantitative cerebral diffusion tensor imaging. BMC Medical Imaging, 2021, 21, 144.	1.4	7

Juha E ×hman

#	Article	IF	CITATIONS
73	Mismatch negativity abnormality in traumatic brain injury without macroscopic lesions on conventional MRI. NeuroReport, 2013, 24, 440-444.	0.6	6
74	Understanding intent to treat analyses: An important lesson from the international cooperative study on the timing of aneurysm surgery. Neurochirurgie, 2022, 68, 471-473.	0.6	6
75	Microvascular Free Flap Reconstruction of Skull Base Penetrating Tumors. Journal of Reconstructive Microsurgery, 2011, 27, 313-320.	1.0	5
76	Long-term MRI findings of patients with embolized cerebral aneurysms. Acta Radiologica, 2011, 52, 204-210.	0.5	5
77	Structural Integrity of Medial Temporal Lobes of Patients with Acute Mild Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 1153-1160.	1.7	5
78	Possible confounding factors on cerebral diffusion tensor imaging measurements. Acta Radiologica Open, 2015, 4, 204798161454679.	0.3	5
79	Procedural complications of endovascular treatment in patients with aneurysmal subarachnoid haemorrhage treated at a single centre. Acta Neurochirurgica, 2018, 160, 551-557.	0.9	3
80	Preventable diagnostic errors in fatal cervical spine injuries: a nationwide register-based study from 1987 to 2010. Spine Journal, 2018, 18, 430-438.	0.6	2
81	Reliability of serum S100B measurement following mild traumatic brain injury: a comparison of assay measurements from two laboratories. Brain Injury, 2020, 34, 1237-1244.	0.6	2
82	Understanding the importance of the primary trial hypothesis: The randomized trial on the timing of ruptured aneurysm surgery. Neurochirurgie, 2022, 68, 474-477.	0.6	2
83	Sport concussion assessment tool-second edition in an emergency department setting. British Journal of Sports Medicine, 2013, 47, e1.13-e1.	3.1	1
84	Violence-related traumatic brain injury. Brain Injury, 2019, 33, 1045-1049.	0.6	1
85	Serotonergic Antidepressants and Risk for Traumatic Intracranial Bleeding. Frontiers in Neurology, 2021, 12, 758707.	1.1	1
86	Image quality and signal distribution in 1.5-T and 3-T MRI in mild traumatic brain injury patients. Proceedings of SPIE, 2009, , .	0.8	0
87	Image-based segmentation for characterization and quantitative analysis of the spinal cord injuries by using diffusion patterns. , 2011, , .		0
88	How to interpret post-concussion symptom severities of scat3 in professional ice hockey players. British Journal of Sports Medicine, 2017, 51, A75.2-A76.	3.1	0
89	The utility of individual baseline versus normative reference values for the scat3 following concussion in professional ice hockey players. British Journal of Sports Medicine, 2017, 51, A77.2-A77.	3.1	0