James C Barrow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/55501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery and Evaluation of Novel Angular Fused Pyridoquinazolinonecarboxamides as RNA Polymerase I Inhibitors. ACS Medicinal Chemistry Letters, 2022, 13, 608-614.	1.3	2
2	Post-weaning social isolation increases ΔFosB/FosB protein expression in sex-specific patterns in the prelimbic/infralimbic cortex and hippocampus in mice. Neuroscience Letters, 2021, 740, 135423.	1.0	8
3	Identification of Small-Molecule Inhibitors of Human Inositol Hexakisphosphate Kinases by High-Throughput Screening. ACS Pharmacology and Translational Science, 2021, 4, 780-789.	2.5	22
4	Membrane bound catechol-O-methytransferase is the dominant isoform for dopamine metabolism in PC12 cells and rat brain. European Journal of Pharmacology, 2021, 896, 173909.	1.7	13
5	Simplifying Submission Requirements for the Journal of Medicinal Chemistry. Journal of Medicinal Chemistry, 2021, 64, 7877-7878.	2.9	0
6	Novel, non-nitrocatechol catechol-O-methyltransferase inhibitors modulate dopamine neurotransmission in the frontal cortex and improve cognitive flexibility. Psychopharmacology, 2020, 237, 2695-2707.	1.5	10
7	Inhibition of Catechol-O-methyltransferase Does Not Alter Effort-Related Choice Behavior in a Fixed Ratio/Concurrent Chow Task in Male Mice. Frontiers in Behavioral Neuroscience, 2020, 14, 73.	1.0	7
8	Synthesis and Evaluation of Bicyclic Hydroxypyridones as Inhibitors of Catechol <i>O</i> -Methyltransferase. ACS Medicinal Chemistry Letters, 2019, 10, 1573-1578.	1.3	6
9	Synthesis and characterization of novel isoform-selective IP6K1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126628.	1.0	15
10	Development of a PC12 Cell Based Assay for Screening Catechol- <i>O</i> -methyltransferase Inhibitors. ACS Chemical Neuroscience, 2019, 10, 4221-4226.	1.7	13
11	A Medicinal Chemist's Perspective on Transitioning from Industry to Academic Drug Discovery. ACS Medicinal Chemistry Letters, 2019, 10, 687-689.	1.3	5
12	Optimization of 8-Hydroxyquinolines as Inhibitors of Catechol <i>O</i> -Methyltransferase. Journal of Medicinal Chemistry, 2018, 61, 9647-9665.	2.9	18
13	Novel inhibitors of As(III) S-adenosylmethionine methyltransferase (AS3MT) identified by virtual screening. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3231-3235.	1.0	6
14	Development of a homogenous high-throughput assay for inositol hexakisphosphate kinase 1 activity. PLoS ONE, 2017, 12, e0188852.	1.1	20
15	Synthesis and optimization of N -heterocyclic pyridinones as catechol- O -methyltransferase (COMT) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2952-2956.	1.0	8
16	TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine] ameliorates diet induced obesity and insulin resistance via inhibition of the IP6K1 pathway. Molecular Metabolism, 2016, 5, 903-917.	3.0	49
17	Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3503-3508.	3.3	33
18	KCNH2-3.1 expression impairs cognition and alters neuronal function in a model of molecular pathology associated with schizophrenia. Molecular Psychiatry, 2016, 21, 1517-1526.	4.1	28

JAMES C BARROW

#	Article	IF	CITATIONS
19	Development of an HTRF Assay for the Detection and Characterization of Inhibitors of Catechol-O-Methyltransferase. Journal of Biomolecular Screening, 2016, 21, 490-495.	2.6	17
20	Adipocyte-specific deletion of Ip6k1 reduces diet-induced obesity by enhancing AMPK-mediated thermogenesis. Journal of Clinical Investigation, 2016, 126, 4273-4288.	3.9	71
21	Synthesis and Evaluation of Heterocyclic Catechol Mimics as Inhibitors of Catechol-O-methyltransferase (COMT). ACS Medicinal Chemistry Letters, 2015, 6, 318-323.	1.3	32
22	Inositol pyrophosphates promote tumor growth and metastasis by antagonizing liver kinase B1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1773-1778.	3.3	84
23	Methyl-substitution of an iminohydantoin spiropiperidine β-secretase (BACE-1) inhibitor has a profound effect on its potency. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4812-4819.	1.0	17
24	Discovery and Optimization of a Series of Pyrimidine-Based Phosphodiesterase 10A (PDE10A) Inhibitors through Fragment Screening, Structure-Based Design, and Parallel Synthesis. Journal of Medicinal Chemistry, 2015, 58, 7888-7894.	2.9	48
25	Classics in Chemical Neuroscience: Diazepam (Valium). ACS Chemical Neuroscience, 2014, 5, 253-260.	1.7	190
26	Inositol Pyrophosphates Mediate the DNA-PK/ATM-p53 Cell Death Pathway by Regulating CK2 Phosphorylation of Tti1/Tel2. Molecular Cell, 2014, 54, 119-132.	4.5	103
27	Design, Synthesis, and Structure–Activity Relationships of Pyridoquinazolinecarboxamides as RNA Polymerase I Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 4950-4961.	2.9	24
28	Characterization of Non-Nitrocatechol Pan and Isoform Specific Catechol- <i>O</i> -methyltransferase Inhibitors and Substrates. ACS Chemical Neuroscience, 2012, 3, 129-140.	1.7	35
29	T-type calcium channel antagonism produces antipsychotic-like effects and reduces stimulant-induced glutamate release in the nucleus accumbens of rats. Neuropharmacology, 2012, 62, 1413-1421.	2.0	31
30	Editorial: Challenges and Opportunities in Neuroscience Research. ChemMedChem, 2012, 7, 339-341.	1.6	2
31	Inhibitors of Catechol-O-Methyltransferase. CNS and Neurological Disorders - Drug Targets, 2012, 11, 324-332.	0.8	13
32	Synthesis and Evaluation of 5-Fluoro-2-aryloxazolo[5,4- <i>b</i>]pyridines as β-Amyloid PET Ligands and Identification of MK-3328. ACS Medicinal Chemistry Letters, 2011, 2, 498-502.	1.3	18
33	[18F]Fluoroazabenzoxazoles as potential amyloid plaque PET tracers: synthesis and in vivo evaluation in rhesus monkey. Nuclear Medicine and Biology, 2011, 38, 1193-1203.	0.3	26
34	High concentration electrophysiology-based fragment screen: Discovery of novel acid-sensing ion channel 3 (ASIC3) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2646-2649.	1.0	19
35	Pyridyl amides as potent inhibitors of T-type calcium channels. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1692-1696.	1.0	29
36	Parallel synthesis of N-biaryl quinolone carboxylic acids as selective M1 positive allosteric modulators. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 531-536.	1.0	48

JAMES C BARROW

#	Article	IF	CITATIONS
37	SAR of tertiary carbinamine derived BACE1 inhibitors: Role of aspartate ligand amine pKa in enzyme inhibition. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1885-1889.	1.0	24
38	Discovery and expanded SAR of 4,4-disubstituted quinazolin-2-ones as potent T-type calcium channel antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5147-5152.	1.0	25
39	In Vitro Characterization of T-Type Calcium Channel Antagonist TTA-A2 and In Vivo Effects on Arousal in Mice. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 409-417.	1.3	97
40	Short-Acting T-Type Calcium Channel Antagonists Significantly Modify Sleep Architecture in Rodents. ACS Medicinal Chemistry Letters, 2010, 1, 504-509.	1.3	16
41	Voltage-Gated Calcium Channel Antagonists for the Central Nervous System. Annual Reports in Medicinal Chemistry, 2010, 45, 2-18.	0.5	7
42	Discovery of 4,4-Disubstituted Quinazolin-2-ones as T-Type Calcium Channel Antagonists. ACS Medicinal Chemistry Letters, 2010, 1, 75-79.	1.3	36
43	Evaluation and Implementation of a Commercially Available Mass-Guided SFC Purification Platform in a High Throughput Purification Laboratory in Drug Discovery. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 483-499.	0.5	28
44	Evolution of Tertiary Carbinamine BACEâ€∃ Inhibitors: Aβ Reduction in Rhesus CSF upon Oral Dosing. ChemMedChem, 2009, 4, 37-40.	1.6	20
45	Positive Allosteric Interaction of Structurally Diverse T-Type Calcium Channel Antagonists. Cell Biochemistry and Biophysics, 2009, 55, 81-93.	0.9	52
46	T-type calcium channels regulate cortical plasticity in-vivo NR-D-08-7049. NeuroReport, 2009, 20, 257-262.	0.6	21
47	Antagonism of T-type calcium channels inhibits high-fat diet–induced weight gain in mice. Journal of Clinical Investigation, 2009, 119, 1659-1667.	3.9	72
48	Discovery of 1,4-Substituted Piperidines as Potent and Selective Inhibitors of T-Type Calcium Channels. Journal of Medicinal Chemistry, 2008, 51, 6471-6477.	2.9	86
49	Design, Synthesis, and Evaluation of a Novel 4-Aminomethyl-4-fluoropiperidine as a T-Type Ca ²⁺ Channel Antagonist. Journal of Medicinal Chemistry, 2008, 51, 3692-3695.	2.9	117
50	Discovery and X-ray Crystallographic Analysis of a Spiropiperidine Iminohydantoin Inhibitor of β-Secretase‡. Journal of Medicinal Chemistry, 2008, 51, 6259-6262.	2.9	59
51	Editorial [Hot Topic: Recent Advances in Medicinal Chemistry for Treatment of Sleep and Wake Disorders (Guest Editor: James Barrow)]. Current Topics in Medicinal Chemistry, 2008, 8, 936-936.	1.0	0
52	Design and Synthesis of 2,3,5-Substituted Imidazolidin-4-one Inhibitors of BACE-1. ChemMedChem, 2007, 2, 995-999.	1.6	36
53	Discovery and SAR of isonicotinamide BACE-1 inhibitors that bind \hat{l}^2 -secretase in a N-terminal 10s-loop down conformation. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1788-1792.	1.0	56
54	Imidazole acetic acid TAFIa inhibitors: SAR studies centered around the basic P 1 ′ group. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2141-2145.	1.0	44

JAMES C BARROW

#	Article	IF	CITATIONS
55	Discovery and Evaluation of Potent P1Aryl Heterocycle-Based Thrombin Inhibitors. Journal of Medicinal Chemistry, 2004, 47, 2995-3008.	2.9	92
56	Design and synthesis of potent and selective macrocyclic thrombin inhibitors. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2781-2784.	1.0	24
57	Unexpected enhancement of thrombin inhibitor potency with o -aminoalkylbenzylamides in the P1 position. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3477-3482.	1.0	27
58	Metabolism-Directed Optimization of 3-Aminopyrazinone Acetamide Thrombin Inhibitors. Development of an Orally Bioavailable Series Containing P1 and P3 Pyridines. Journal of Medicinal Chemistry, 2003, 46, 461-473.	2.9	118
59	Synthesis and Evaluation of Imidazole Acetic Acid Inhibitors of Activated Thrombin-Activatable Fibrinolysis Inhibitor as Novel Antithrombotics. Journal of Medicinal Chemistry, 2003, 46, 5294-5297.	2.9	33
60	Discovery of a nonpeptidic small molecule antagonist of the human platelet thrombin receptor (PAR-1). Bioorganic and Medicinal Chemistry Letters, 2002, 12, 319-323.	1.0	42
61	A facile three-step synthesis of 1,2-amino alcohols using the Ellman homochiral tert-butylsulfinamide. Tetrahedron Letters, 2001, 42, 2051-2054.	0.7	74
62	Discovery and initial structure–Activity relationships of trisubstituted ureas as thrombin receptor (PAR-1) antagonists. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2691-2696.	1.0	28
63	Preparation and evaluation of 1,3-diaminocyclopentane-linked dihydropyrimidinone derivatives as selective α1a-receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1917-1920.	1.0	23
64	Selective α1a adrenergic receptor antagonists based on 4-aryl-3,4-dihydropyridine-2-ones. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1625-1628.	1.0	50
65	In Vitro and in Vivo Evaluation of Dihydropyrimidinone C-5 Amides as Potent and Selective α1AReceptor Antagonists for the Treatment of Benign Prostatic Hyperplasia. Journal of Medicinal Chemistry, 2000, 43, 2703-2718.	2.9	213
66	Total Syntheses of Vancomycin and Eremomycin Aglycons. Angewandte Chemie - International Edition, 1998, 37, 2700-2704.	7.2	251
67	Synthesis and Conformational Properties of the M(4-6)(5-7) Bicyclic Tetrapeptide Common to the Vancomycin Antibiotics. Journal of the American Chemical Society, 1997, 119, 3417-3418.	6.6	71
68	Approaches to the Synthesis of the Vancomycin Antibiotics. Synthesis of Orienticin C (Bis-dechlorovancomycin) Aglycon. Journal of the American Chemical Society, 1997, 119, 3419-3420.	6.6	89
69	Aldol reactions of ketal-protected tartrate ester enolates. Asymmetric syntheses and absolute stereochemical assignments of phospholipase A2 inhibitors cinatrin C1 and C3. Tetrahedron, 1997, 53, 8779-8794.	1.0	36
70	Mild nitrosation and hydrolysis of polyfunctional amides. Tetrahedron Letters, 1997, 38, 4535-4538.	0.7	70
71	Asymmetric Synthesis of the Squalene Synthase Inhibitor Zaragozic Acid C. Journal of the American Chemical Society, 1994, 116, 12111-12112.	6.6	98