
Kenichi Komura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5549678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZrOCl2·8H2O catalysts for the esterification of long chain aliphatic carboxylic acids and alcohols. The enhancement of catalytic performance by supporting on ordered mesoporous silica. Green Chemistry, 2005, 7, 677.	9.0	65
2	Mesoporous silica MCM-41 as a highly active, recoverable and reusable catalyst for direct amidation of fatty acids and long-chain amines. Green Chemistry, 2011, 13, 828.	9.0	50
3	Friedel–Crafts benzylation of aromatics with benzyl alcohols catalyzed by heteropoly acids supported on mesoporous silica. Journal of Chemical Technology and Biotechnology, 2006, 81, 981-988.	3.2	33
4	The Hydroamination of methyl acrylates with amines over zeolites. Catalysis Letters, 2005, 102, 191-196.	2.6	22
5	Zincoaluminophosphate Molecular Sieves with AFI and ATS Topologies: Synthesis by Dry-Gel Conversion Methods and Their Catalytic Properties in the Isopropylation of Biphenyl. Materials Transactions, 2005, 46, 2659-2667.	1.2	18
6	Zeolite catalyzed highly selective synthesis of 2-methoxy-6-acetylnaphthalene by Friedel-Crafts acylation of 2-methoxynaphthalene in acetic acid reaction media. Journal of Molecular Catalysis A, 2017, 426, 170-176.	4.8	18
7	Direct Amide Synthesis from Equimolar Amounts of Carboxylic Acid and Amine Catalyzed by Mesoporous Silica SBA-15. Synthesis, 2015, 47, 769-776.	2.3	16
8	Reaction Profiles of High Silica MOR Zeolite Catalyzed Friedel–Crafts Acylation of Anisole Using Acetic Anhydride in Acetic Acid. Catalysis Letters, 2018, 148, 2974-2979.	2.6	11
9	GAM-3: a zeolite formed from AlPO ₄ -5 <i>via</i> multistep structural changes. Chemical Communications, 2020, 56, 14901-14904.	4.1	10
10	Seeding on the Synthesis of MCM-22 (MWW) Zeolite by Dry-Gel Conversion Method and its Catalytic Properties on the Skeleton Isomerization and the Cracking of Hexane. Materials Transactions, 2005, 46, 2651-2658.	1.2	8
11	Na-Y Zeolite as a Highly Active Catalyst for the Hydroamination of α,β-Unsaturated Compounds with Aromatic Amines. Catalysis Letters, 2009, 128, 203-209.	2.6	8
12	Isopropylation of naphthalene over H-mordenite, H-Y, and H-beta zeolites: Roles of isopropylnaphthalene isomers. Korean Journal of Chemical Engineering, 2011, 28, 409-417.	2.7	7
13	The isopropylation of biphenyl over H-mordenite — Roles of 3- and 4-isopropylbiphenyls. Korean Journal of Chemical Engineering, 2013, 30, 1043-1050.	2.7	6
14	Synthesis, crystal structure and characterization of novel open framework CHA-type aluminophosphate involving a chiral diamine. Dalton Transactions, 2016, 45, 15193-15202.	3.3	6
15	GAM-4: a novel microporous silicoaluminophosphate crystal formed by the interzeolite conversion of SAPO-5 zeolite. Journal of Porous Materials, 2022, 29, 583-590.	2.6	6
16	The Di-t-butylation of p-cresol with t-butanol in Supercritical CO2 over Tungstophosphoric Acid Supported on Ordered Mesoporous Silica. Catalysis Letters, 2006, 108, 31-35.	2.6	5
17	Synthesis of germanosilicate type CDS-1 zeolite with CDO topology and its zeolitic layered precursor. Journal of Porous Materials, 2016, 23, 11-17.	2.6	5
18	Preparation of 2 <i>H</i> â€5,6â€Dihydroselenines Using αâ€Alkoxy Carbonylselenoacetamide. Journal of Heterocyclic Chemistry, 2015, 52, 513-517.	2.6	4

Kenichi Komura

#	Article	IF	CITATIONS
19	Hydrothermal synthesis of titanosilicate type zeolitic layered PLS-1 and CDS-1 molecular sieve with CDO topology. Journal of Porous Materials, 2017, 24, 203-209.	2.6	4
20	Large Crystals Synthesis of Siliceous Layered Zeolitic PLSâ€1 and CDSâ€1 Zeolite by Dry Gel Conversion Method. Crystal Research and Technology, 2018, 53, 1800036.	1.3	4
21	A Novel Friedel-Crafts Acylation Reaction of Anisole for Production of 4-Methoxyacetophenone with High Selectivity and Sufficient Reusability of Mordenite Zeolite Catalyst. Green and Sustainable Chemistry, 2017, 07, 185-192.	1.2	4
22	Substitutional isomerism of triisopropylnaphthalenes in the isopropylation of naphthalene. Assignment by gas chromatography and confirmation by DFT calculation. Research on Chemical Intermediates, 2022, 48, 869-884.	2.7	4
23	Isomerization and Cracking of Hexane over Beta Zeolites Synthesized by Dry Gel Conversion Method. Journal of the Japan Petroleum Institute, 2012, 55, 120-131.	0.6	3
24	Synthesis of Gallosilicate Type Molecular Sieve with CDO Topology and Application to Solid Acid Catalyst. Journal of the Japan Petroleum Institute, 2014, 57, 184-191.	0.6	3
25	Alkaline Earth Metal Modified H-Mordenites. Their Catalytic Properties in the Isopropylation of Biphenyl. Industrial & Engineering Chemistry Research, 2015, 54, 12283-12292.	3.7	3
26	Mesoporous Silica Catalyzed the Direct Amidation of Palmitic Acid and Hexylamine and Unique Dependence of Reaction Rate on Pore Size with <i>p</i> 6 <i>mm</i> Topological Catalyst. Chemistry Letters, 2016, 45, 451-453.	1.3	3
27	Convenient Synthesis of Mesoporous Aluminosilicates by Using Pre-heated Sodium Aluminosilicate Gel. Topics in Catalysis, 2010, 53, 529-534.	2.8	1
28	Selective Isopropylation of Isobutylbenzene over H-Mordenite in Supercritical CO2 Medium: Remarkable Enhancement in Catalytic Activity and Selectivity for 4-Isobutylcumene. Catalysis Letters, 2008, 123, 259-263.	2.6	0
29	QUINOLINE-CARBOIMINE PALLADIUM COMPLEX IMMOBILIZED ON MCM-41 AS A VERSATILE CATALYST FOR SONOGASHIRA CROSS-COUPLING REACTION. , 2008, , .		0