Armando Azua-Bustos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5549488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Life at the dry edge: Microorganisms of the Atacama Desert. FEBS Letters, 2012, 586, 2939-2945.	2.8	135
2	The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653.	3.0	133
3	Hypolithic Cyanobacteria Supported Mainly by Fog in the Coastal Range of the Atacama Desert. Microbial Ecology, 2011, 61, 568-581.	2.8	102
4	Discovery and microbial content of the driest site of the hyperarid <scp>A</scp> tacama <scp>D</scp> esert, <scp>C</scp> hile. Environmental Microbiology Reports, 2015, 7, 388-394.	2.4	73
5	Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert. Scientific Reports, 2018, 8, 16706.	3.3	54
6	lsolation of UVC-Tolerant Bacteria from the Hyperarid Atacama Desert, Chile. Microbial Ecology, 2013, 65, 325-335.	2.8	41
7	Gloeocapsopsis AAB1, an extremely desiccation-tolerant cyanobacterium isolated from the Atacama Desert. Extremophiles, 2014, 18, 61-74.	2.3	40
8	Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 327-336.	3.8	39
9	Ancient Photosynthetic Eukaryote Biofilms in an Atacama Desert Coastal Cave. Microbial Ecology, 2009, 58, 485-496.	2.8	38
10	A novel subaerial Dunaliella species growing on cave spiderwebs in the Atacama Desert. Extremophiles, 2010, 14, 443-452.	2.3	37
11	Aeolian transport of viable microbial life across the Atacama Desert, Chile: Implications for Mars. Scientific Reports, 2019, 9, 11024.	3.3	36
12	The extremely halotolerant black yeast Hortaea werneckii - a model for intraspecific hybridization in clonal fungi. IMA Fungus, 2019, 10, 10.	3.8	30
13	Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a phialosimplex-like morphology. Extremophiles, 2017, 21, 755-773.	2.3	27
14	Extreme environments as potential drivers of convergent evolution by exaptation: the Atacama Desert Coastal Range case. Frontiers in Microbiology, 2012, 3, 426.	3.5	24
15	Biotechnological Applications Derived from Microorganisms of the Atacama Desert. BioMed Research International, 2014, 2014, 1-7.	1.9	22
16	Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. Scientific Reports, 2020, 10, 19183.	3.3	21
17	The Atacama Desert in Northern Chile as an Analog Model of Mars. Frontiers in Astronomy and Space Sciences, 2022, 8,	2.8	21
18	The Hyperarid Core of the Atacama Desert, an Extremely Dry and Carbon Deprived Habitat of Potential Interest for the Field of Carbon Science. Frontiers in Microbiology, 2017, 8, 993.	3.5	19

#	Article	IF	CITATIONS
19	A roadmap for planetary caves science and exploration. Nature Astronomy, 2021, 5, 524-525.	10.1	19
20	A surface temperature and moisture intercomparison study of the Weather Research and Forecasting model, inâ€situ measurements and satellite observations over the Atacama Desert. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2202-2220.	2.7	17
21	Metabolomics as an Emerging Tool in the Search for Astrobiologically Relevant Biomarkers. Astrobiology, 2020, 20, 1251-1261.	3.0	16
22	Draft Genome Sequence of the Extremely Desiccation-Tolerant Cyanobacterium Gloeocapsopsis sp. Strain AAB1. Genome Announcements, 2018, 6, .	0.8	12
23	The potential for detecting †life as we don't know it' by fractal complexity analysis. International Journal of Astrobiology, 2013, 12, 314-320.	1.6	11
24	Planetary Protection and the astrobiological exploration of Mars: Proactive steps in moving forward. Advances in Space Research, 2019, 63, 1491-1497.	2.6	11
25	Emendation of the Coccoid Cyanobacterial Genus Gloeocapsopsis and Description of the New Species Gloeocapsopsis diffluens sp. nov. and Gloeocapsopsis dulcis sp. nov. Isolated From the Coastal Range of the Atacama Desert (Chile). Frontiers in Microbiology, 2021, 12, 671742.	3.5	11
26	Mini-Review: Probing the limits of extremophilic life in extraterrestrial environment-simulated experiments. International Journal of Astrobiology, 2012, 11, 251-256.	1.6	9
27	Fundamental Science and Engineering Questions in Planetary Cave Exploration. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	8
28	Crystalline water in gypsum is unavailable for cyanobacteria in laboratory experiments and in natural desert endolithic habitats. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27786-27787.	7.1	5
29	The beauty and the yeast: can the microalgae Dunaliella form a borderline lichen with Hortaea werneckii?. Symbiosis, 2020, 82, 123-131.	2.3	5
30	Can Halophilic and Psychrophilic Microorganisms Modify the Freezing/Melting Curve of Cold Salty Solutions? Implications for Mars Habitability. Astrobiology, 2020, 20, 1067-1075.	3.0	2
31	Early Mars – Cradle or Cauldron?. , 0, , 157-174.		0