
Stamatina Kallithraka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5549375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolism of Anthocyanins by Human Gut Microflora and Their Influence on Gut Bacterial Growth. Journal of Agricultural and Food Chemistry, 2012, 60, 3882-3890.	2.4	371
2	Application of quality control methods for assessing wine authenticity: Use of multivariate analysis (chemometrics). Trends in Food Science and Technology, 1999, 10, 321-336.	7.8	213
3	Instrumental and sensory analysis of Greek wines; implementation of principal component analysis (PCA) for classification according to geographical origin. Food Chemistry, 2001, 73, 501-514.	4.2	191
4	Determination of low molecular weight polyphenolic constituents in grape (Vitis vinifera sp.) seed extracts: Correlation with antiradical activity. Food Chemistry, 2005, 89, 1-9.	4.2	168
5	Survey of solvents for the extraction of grape seed phenolics. Phytochemical Analysis, 1995, 6, 265-267.	1.2	153
6	Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chemistry, 2009, 113, 500-505.	4.2	153
7	Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state: effects of copigmentation and glass transition. Food Chemistry, 2003, 83, 423-436.	4.2	151
8	Determination of major anthocyanin pigments in Hellenic native grape varieties (Vitis vinifera sp.): association with antiradical activity. Journal of Food Composition and Analysis, 2005, 18, 375-386.	1.9	146
9	Flavonols in grapes, grape products and wines: Burden, profile and influential parameters. Journal of Food Composition and Analysis, 2006, 19, 396-404.	1.9	146
10	Irrigation and Rootstock Effects on the Phenolic Concentration and Aroma Potential of Vitis vinifera L. cv. Cabernet Sauvignon Grapes. Journal of Agricultural and Food Chemistry, 2009, 57, 7805-7813.	2.4	118
11	Correlations between saliva protein composition and some T–I parameters of astringency. Food Quality and Preference, 2001, 12, 145-152.	2.3	106
12	EVALUATION OF BITTERNESS AND ASTRINGENCY OF (+)-CATECHIN AND (-)-EPICATECHIN IN RED WINE AND IN MODEL SOLUTION. Journal of Sensory Studies, 1997, 12, 25-37.	0.8	103
13	Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents. Talanta, 2006, 70, 1143-1152.	2.9	101
14	Flavour analysis of Greek white wine by solid-phase microextraction–capillary gas chromatography–mass spectrometry. Journal of Chromatography A, 2003, 985, 233-246.	1.8	98
15	Principal phenolic compounds in Greek red wines. Food Chemistry, 2006, 99, 784-793.	4.2	93
16	EVIDENCE THAT SALIVARY PROTEINS ARE INVOLVED IN ASTRINGENCY. Journal of Sensory Studies, 1998, 13, 29-43.	0.8	90
17	The effect of polyphenolic composition as related to antioxidant capacity in white wines. Food Research International, 2003, 36, 805-814.	2.9	83

Nutritional Composition of Molokhia <i>(Corchorus olitorius)</i> and Stamnagathi <i>(Cichorium) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

STAMATINA KALLITHRAKA

#	Article	IF	CITATIONS
19	Effect of pH on Astringency in Model Solutions and Wines. Journal of Agricultural and Food Chemistry, 1997, 45, 2211-2216.	2.4	72
20	Grape brandy production, composition and sensory evaluation. Journal of the Science of Food and Agriculture, 2014, 94, 404-414.	1.7	71
21	Effects of Severity of Post-flowering Leaf Removal on Berry Growth and Composition of Three Red Vitis vinifera L. Cultivars Grown under Semiarid Conditions. Journal of Agricultural and Food Chemistry, 2012, 60, 6000-6010.	2.4	69
22	The application of an improved method for trans-resveratrol to determine the origin of Greek red wines. Food Chemistry, 2001, 75, 355-363.	4.2	59
23	Nutritional Composition of Selected Wild Plants in the Diet of Crete. , 2003, 91, 22-40.		56
24	Evaluation of the antiradical and reducing properties of selected Greek white wines: correlation with polyphenolic composition. Journal of the Science of Food and Agriculture, 2002, 82, 1014-1020.	1.7	53
25	Changes in Tannin Composition of Syrah Grape Skins and Seeds during Fruit Ripening under Contrasting Water Conditions. Molecules, 2017, 22, 1453.	1.7	52
26	Refining of wine lees and cheese whey for the production of microbial oil, polyphenolâ€rich extracts and valueâ€added coâ€products. Journal of Chemical Technology and Biotechnology, 2018, 93, 257-268.	1.6	51
27	Red Wine and Model Wine Astringency as Affected by Malic and Lactic Acid. Journal of Food Science, 1997, 62, 416-420.	1.5	47
28	Kinetics of browning onset in white wines: influence of principal redox-active polyphenols and impact on the reducing capacity. Food Chemistry, 2006, 94, 98-104.	4.2	46
29	An analytical survey of the polyphenols of seeds of varieties of grape (Vitis vinifera) cultivated in Greece: implications for exploitation as a source of value-added phytochemicals. Phytochemical Analysis, 2005, 16, 17-23.	1.2	42
30	A natural alternative to sulphur dioxide for red wine production: Influence on colour, antioxidant activity and anthocyanin content. Journal of Food Composition and Analysis, 2008, 21, 660-666.	1.9	41
31	Effect of irrigation regime on perceived astringency and proanthocyanidin composition of skins and seeds of Vitis vinifera L. cv. Syrah grapes under semiarid conditions. Food Chemistry, 2016, 203, 292-300.	4.2	39
32	Anthocyanin profiles of major red grape (<i>Vitis vinifera</i> L.) varieties cultivated in Greece and their relationship with <i>in vitro</i> antioxidant characteristics. International Journal of Food Science and Technology, 2009, 44, 2385-2393.	1.3	37
33	Sensory assessment and chemical measurement of astringency of Greek wines: Correlations with analytical polyphenolic composition. Food Chemistry, 2011, 126, 1953-1958.	4.2	36
34	Differentiation of Young Red Wines Based on Chemometrics of Minor Polyphenolic Constituents. Journal of Agricultural and Food Chemistry, 2007, 55, 3233-3239.	2.4	32
35	Interaction of (+)-catechin, (?)-epicatechin, procyanidin B2 and procyanidin C1 with pooled human salivain vitro. Journal of the Science of Food and Agriculture, 2001, 81, 261-268.	1.7	31
36	Effect of irrigation regime on anthocyanin content and antioxidant activity of <i>Vitis vinifera</i> L. cv. Syrah grapes under semiarid conditions. Journal of the Science of Food and Agriculture, 2016, 96, 988-996.	1.7	30

#	Article	IF	CITATIONS
37	Browning development in white wines: dependence on compositional parameters and impact on antioxidant characteristics. European Food Research and Technology, 2005, 220, 326-330.	1.6	29
38	Discrimination of five Greek red grape varieties according to the anthocyanin and proanthocyanidin profiles of their skins and seeds. Journal of Food Composition and Analysis, 2020, 92, 103547.	1.9	28
39	Optimization of polyphenol extraction from red grape pomace using aqueous glycerol/tartaric acid mixtures and response surface methodology. Preparative Biochemistry and Biotechnology, 2016, 46, 176-182.	1.0	27
40	Wine authentication with Fourier Transform Infrared Spectroscopy: a feasibility study on variety, type of barrel wood and ageing time classification. International Journal of Food Science and Technology, 2017, 52, 1307-1313.	1.3	26
41	Proanthocyanidin content as an astringency estimation tool and maturation index in red and white winemaking technology. Food Chemistry, 2019, 299, 125135.	4.2	26
42	Diffuse reflectance Fourier transform infrared spectroscopy for simultaneous quantification of total phenolics and condensed tannins contained in grape seeds. Industrial Crops and Products, 2015, 74, 784-791.	2.5	25
43	Evolution of malolactic bacteria and biogenic amines during spontaneous malolactic fermentations in a Greek winery. Letters in Applied Microbiology, 2006, 43, 155-160.	1.0	24
44	Fuzzy logic tool for wine quality classification. Computers and Electronics in Agriculture, 2017, 142, 552-562.	3.7	23
45	Limit SO2 content of wines by applying High Hydrostatic Pressure. Innovative Food Science and Emerging Technologies, 2020, 62, 102342.	2.7	23
46	Differentiation of Wines Treated with Wood Chips Based on Their Phenolic Content, Volatile Composition, and Sensory Parameters. Journal of Food Science, 2015, 80, C2701-10.	1.5	22
47	Addition of wood chips in red wine during and after alcoholic fermentation: differences in color parameters, phenolic content and volatile composition. Oeno One, 2017, 50, .	0.7	20
48	Characterization of grape and wine proanthocyanidins of Agiorgitiko (Vitis vinifera L. cv.) cultivar grown in different regions of Nemea. Journal of Food Composition and Analysis, 2017, 63, 98-110.	1.9	18
49	Wine Authenticity and Traceability with the Use of FT-IR. Beverages, 2020, 6, 30.	1.3	18
50	Analytical phenolic composition and sensory assessment of selected rare Greek cultivars after extended bottle ageing. Journal of the Science of Food and Agriculture, 2015, 95, 1638-1647.	1.7	17
51	Red Wine Age Estimation by the Alteration of Its Color Parameters: Fourier Transform Infrared Spectroscopy as a Tool to Monitor Wine Maturation Time. Journal of Analytical Methods in Chemistry, 2017, 2017, 1-9.	0.7	17
52	Effect of sulfur dioxide addition in wild yeast population dynamics and polyphenolic composition during spontaneous red wine fermentation from Vitis vinifera cultivar Agiorgitiko. European Food Research and Technology, 2014, 239, 1067-1075.	1.6	15
53	Anthocyanin content and composition in four red winegrape cultivars (Vitis vinifera L.) under variable irrigation. Oeno One, 2019, 53, .	0.7	15
54	Authenticity Determination of Greek-Cretan Mono-Varietal White and Red Wines Based on their Phenolic Content Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and Chemometrics. Current Research in Nutrition and Food Science, 2016, 4, 54-62.	0.3	14

#	Article	IF	CITATIONS
55	A Comparative Evaluation of Aqueous Natural Organic Acid Media for the Efficient Recovery of Flavonoids from Red Grape (Vitis vinifera) Pomace. Waste and Biomass Valorization, 2015, 6, 391-400.	1.8	13
56	Effect of Myclobutanil Pesticide on the Physiological Behavior of Two Newly Isolated Saccharomyces cerevisiae Strains during Very-High-Gravity Alcoholic Fermentation. Microorganisms, 2019, 7, 666.	1.6	13
57	Direct and Simultaneous Quantification of Tannin Mean Degree of Polymerization and Percentage of Galloylation in Grape Seeds Using Diffuse Reflectance Fourier Transformâ€Infrared Spectroscopy. Journal of Food Science, 2015, 80, C298-306.	1.5	12
58	Ellagitannins in wines: Future prospects in methods of analysis using FT-IR spectroscopy. LWT - Food Science and Technology, 2019, 101, 48-53.	2.5	12
59	Effect of the degree of toasting on the extraction pattern and profile of antioxidant polyphenols leached from oak chips in model wine systems. European Food Research and Technology, 2015, 240, 1065-1074.	1.6	11
60	Characterization of Greek Wines by Ultraviolet–Visible Absorption Spectroscopy and Statistical Multivariate Methods. Analytical Letters, 2017, 50, 1950-1963.	1.0	11
61	Effect of vine training system on the phenolic composition of red grapes (Vitis) Tj ETQq1 1 0.784314	rgBT_/Ove 0.7	erlock 10 Tf 50
62	Color change of bottled white wines as a quality indicator. Oeno One, 2020, 54, 543-551.	0.7	10
63	Effect of the combined application of heat treatment and proteases on protein stability and volatile composition of Greek white wines. Oeno One, 2020, 54, 175-188.	0.7	10
64	Evaluation of a Raman spectroscopic method for the determination of alcohol content in Greek spirit Tsipouro. Current Research in Nutrition and Food Science, 2016, 4, 01-09.	0.3	9
65	Effect of Yeast Assimilable Nitrogen Content on Fermentation Kinetics, Wine Chemical Composition and Sensory Character in the Production of Assyrtiko Wines. Applied Sciences (Switzerland), 2022, 12, 1405.	1.3	9
66	Mediterranean Diet in the Maghreb: An Update. , 2006, 97, 139-161.		8
67	Irrigation and Leaf Removal Effects on Polyphenolic Content of Grapes and Wines Produced from cv. Ā¢â,¬ĒœAgiorgitikoĀ¢â,¬â"¢ (<i>Vitis vinifera</i> L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44, 133-139.	0.5	8
68	Effects of foliar application of inactivated yeast on the phenolic composition of Vitis vinifera L. cv. Agiorgitiko grapes under different irrigation levels. International Journal of Wine Research, O, Volume 9, 23-33.	0.5	5
69	Row Orientation and Defoliation Effects on Grape Composition of Vitis vinifera L. Agiorgitiko in Nemea (Greece). E3S Web of Conferences, 2018, 50, 01039.	0.2	5
70	Amino acid content of Agiorgitiko (Vitis vinifera L. cv.) grape cultivar grown in representative regions of Nemea. European Food Research and Technology, 2018, 244, 2041-2050.	1.6	5
71	Kinetic Modelling for Flavonoid Recovery from Red Grape (Vitis vinifera) Pomace with Aqueous Lactic Acid. Processes, 2014, 2, 901-911.	1.3	4
72	Monitoring wine aging with Fourier transform infrared spectroscopy (FT-IR). BIO Web of Conferences, 2015. 5. 02016.	0.1	4

#	Article	IF	CITATIONS
73	Reducing SO ₂ content in wine by combining High Pressure and glutathione addition. Oeno One, 2021, 55, 235-252.	0.7	4
74	Effects of post-veraison irrigation on the phenolic composition of <i>Vitis vinifera</i> L. cv. â€~Xinomavro' grapes. Oeno One, 2021, 55, 173-189.	0.7	4
75	Trials of Commercial- and Wild-Type Saccharomyces cerevisiae Strains under Aerobic and Microaerophilic/Anaerobic Conditions: Ethanol Production and Must Fermentation from Grapes of Santorini (Greece) Native Varieties. Fermentation, 2022, 8, 249.	1.4	4
76	Improving Wine Quality and Safety. Beverages, 2021, 7, 19.	1.3	3
77	Preliminary study of flavor compounds as oxidation markers in bottled white wines of Greek origin. Oeno One, 2019, 53, .	0.7	3
78	Mediterranean Diets in the Maghreb. , 2000, 87, 160-179.		2
79	Polyphenols in Hellenic wines: creating composition tables as a tool for epidemiological studies. Journal of Wine Research, 2003, 14, 103-114.	0.9	2
80	Authentication of wine and other alcohol-based beverages—Future global scenario. , 2022, , 669-695.		2
81	Browning Development and Antioxidant Compounds in White Wines after Selenium, Iron, and Peroxide Addition. Applied Sciences (Switzerland), 2022, 12, 3834.	1.3	2