## **Zhifeng Jiang**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5549091/publications.pdf

Version: 2024-02-01

|          |                | 101543       | 144013         |
|----------|----------------|--------------|----------------|
| 57       | 4,448          | 36           | 57             |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
| F 7      | F-7            | 57           | 5.07           |
| 57       | 57             | 57           | 5687           |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

| #  | Article                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Hierarchical Z‑Scheme αâ€Fe <sub>2</sub> O <sub>3</sub> /g <sub>3</sub> N <sub>4</sub> Hybrid for Enhanced Photocatalytic CO <sub>2</sub> Reduction. Advanced Materials, 2018, 30, 1706108.                                                                                            | 21.0 | 761       |
| 2  | Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2019, 256, 117854.                                                                                                                                                 | 20.2 | 271       |
| 3  | Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. CrystEngComm, 2013, 15, 560-569.                                                                                                                                        | 2.6  | 244       |
| 4  | Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO <sub>2</sub> spheres for water pollution treatment and hydrogen production. Journal of Materials Chemistry A, 2016, 4, 1806-1818.                                                                         | 10.3 | 228       |
| 5  | Nature-based catalyst for visible-light-driven photocatalytic CO <sub>2</sub> reduction. Energy and Environmental Science, 2018, 11, 2382-2389.                                                                                                                                          | 30.8 | 198       |
| 6  | A new visible light active multifunctional ternary composite based on TiO2–In2O3 nanocrystals heterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutant and H2 evolution. Applied Catalysis B: Environmental, 2015, 170-171, 195-205. | 20.2 | 160       |
| 7  | CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption. Applied Catalysis B: Environmental, 2019, 259, 118072.          | 20.2 | 158       |
| 8  | Silver-loaded nitrogen-doped yolk–shell mesoporous TiO <sub>2</sub> hollow microspheres with enhanced visible light photocatalytic activity. Nanoscale, 2015, 7, 784-797.                                                                                                                | 5.6  | 157       |
| 9  | Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 539-549.                                                                                          | 4.7  | 150       |
| 10 | Carbon nitride coupled with CdS-TiO 2 nanodots as 2D/OD ternary composite with enhanced photocatalytic H 2 evolution: A novel efficient three-level electron transfer process. Applied Catalysis B: Environmental, 2017, 210, 194-204.                                                   | 20.2 | 133       |
| 11 | Facile route fabrication of nano-Ni core mesoporous-silica shell particles with high catalytic activity towards 4-nitrophenol reduction. CrystEngComm, 2012, 14, 4601.                                                                                                                   | 2.6  | 109       |
| 12 | Enhanced Visible-Light-Driven Photocatalytic Bacterial Inactivation by Ultrathin Carbon-Coated Magnetic Cobalt Ferrite Nanoparticles. Environmental Science & Environmental Science & 2018, 52, 4774-4784.                                                                               | 10.0 | 108       |
| 13 | Photo-assisted separation of noble-metal-free oxidation and reduction cocatalysts for graphitic carbon nitride nanosheets with efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 280, 119456.                                                       | 20.2 | 91        |
| 14 | In situ synthesis of silver supported nanoporous iron oxide microbox hybrids from metal–organic frameworks and their catalytic application in p-nitrophenol reduction. Physical Chemistry Chemical Physics, 2015, 17, 2550-2559.                                                         | 2.8  | 76        |
| 15 | AglnS2/In2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production.<br>Nano Energy, 2018, 46, 234-240.                                                                                                                                                   | 16.0 | 76        |
| 16 | Enhanced CO <sub>2</sub> reduction and valuable C <sub>2+</sub> chemical production by a CdS-photosynthetic hybrid system. Nanoscale, 2019, 11, 9296-9301.                                                                                                                               | 5.6  | 71        |
| 17 | Bamboo leaf-assisted formation of carbon/nitrogen co-doped anatase TiO <sub>2</sub> modified with silver and graphitic carbon nitride: novel and green synthesis and cooperative photocatalytic activity. Dalton Transactions, 2014, 43, 13792.                                          | 3.3  | 70        |
| 18 | Natural leaves-assisted synthesis of nitrogen-doped, carbon-rich nanodots-sensitized, Ag-loaded anatase TiO2 square nanosheets with dominant {001} facets and their enhanced catalytic applications. Journal of Materials Chemistry A, 2013, 1, 14963.                                   | 10.3 | 69        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS <sub>2</sub> Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms. Environmental Science & Effects and Inactivation Mechanisms.                                               | 10.0 | 69        |
| 20 | Defectâ€Typeâ€Dependent Nearâ€Infraredâ€Driven Photocatalytic Bacterial Inactivation by Defective Bi <sub>2</sub> S <sub>3</sub> nanorods. ChemSusChem, 2019, 12, 890-897.                                                                             | 6.8  | 68        |
| 21 | In situ synthesis of bimetallic Ag/Pt loaded single-crystalline anatase TiO2 hollow nano-hemispheres and their improved photocatalytic properties. CrystEngComm, 2014, 16, 2384.                                                                       | 2.6  | 64        |
| 22 | In situ chemical transformation synthesis of Bi <sub>4</sub> Ti <sub>3</sub> O <sub>12</sub> /l–BiOCl 2D/2D heterojunction systems for water pollution treatment and hydrogen production. Catalysis Science and Technology, 2017, 7, 3863-3875.        | 4.1  | 62        |
| 23 | Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy and Environmental Science, 2019, 12, 2185-2191.                                                                 | 30.8 | 61        |
| 24 | M <sub>X</sub> P(M = Co/Ni)@carbon core–shell nanoparticles embedded in 3D cross-linked graphene<br>aerogel derived from seaweed biomass for hydrogen evolution reaction. Nanoscale, 2018, 10,<br>9698-9706.                                           | 5.6  | 58        |
| 25 | Characterization and comparison of uniform hydrophilic/hydrophobic transparent silica aerogel beads: skeleton strength and surface modification. RSC Advances, 2015, 5, 55579-55587.                                                                   | 3.6  | 56        |
| 26 | Visible-light-driven photocatalytic inactivation of Escherichia coli K-12 over thermal treated natural magnetic sphalerite: Band structure analysis and toxicity evaluation. Applied Catalysis B: Environmental, 2018, 224, 541-552.                   | 20.2 | 49        |
| 27 | Anchoring Copper Single Atoms on Porous Boron Nitride Nanofiber to Boost Selective Reduction of Nitroaromatics. ACS Nano, 2022, 16, 4152-4161.                                                                                                         | 14.6 | 47        |
| 28 | Gentle way to build reduced titanium dioxide nanodots integrated with graphite-like carbon spheres: From DFT calculation to experimental measurement. Applied Catalysis B: Environmental, 2017, 204, 283-295.                                          | 20.2 | 45        |
| 29 | Xâ€Shaped αâ€FeOOH with Enhanced Charge Separation for Visibleâ€Lightâ€Driven Photocatalytic Overall Water Splitting. ChemSusChem, 2018, 11, 1365-1373.                                                                                                | 6.8  | 45        |
| 30 | Biomass-derived multifunctional TiO <sub>2</sub> /carbonaceous aerogel composite as a highly efficient photocatalyst. RSC Advances, 2016, 6, 25255-25266.                                                                                              | 3.6  | 44        |
| 31 | Facile synthesis of oxygen defective yolk–shell BiO <sub>2â^'x</sub> for visible-light-driven photocatalytic inactivation of <i>Escherichia coli</i> . Journal of Materials Chemistry A, 2018, 6, 4997-5005.                                           | 10.3 | 44        |
| 32 | Solar-light-driven rapid water disinfection by ultrathin magnesium titanate/carbon nitride hybrid photocatalyst: Band structure analysis and role of reactive oxygen species. Applied Catalysis B: Environmental, 2019, 257, 117898.                   | 20.2 | 42        |
| 33 | Ultrafine Bi <sub>3</sub> TaO <sub>7</sub> Nanodot-Decorated V, N Codoped TiO <sub>2</sub> Nanoblocks for Visible-Light Photocatalytic Activity: Interfacial Effect and Mechanism Insight. ACS Applied Materials & Decoration (1), 13011-13021.        | 8.0  | 41        |
| 34 | Structure defects promoted exciton dissociation and carrier separation for enhancing photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 264, 118480.                                                                         | 20.2 | 40        |
| 35 | Natural carbon nanodots assisted development of size-tunable metal (Pd, Ag) nanoparticles grafted on bionic dendritic α-Fe <sub>2</sub> O <sub>3</sub> for cooperative catalytic applications. Journal of Materials Chemistry A, 2015, 3, 23607-23620. | 10.3 | 39        |
| 36 | Chrysanthemum-like FeS/Ni3S2 heterostructure nanoarray as a robust bifunctional electrocatalyst for overall water splitting. Journal of Colloid and Interface Science, 2022, 608, 536-548.                                                             | 9.4  | 39        |

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Recent Progress on Carbon Nitride and Its Hybrid Photocatalysts for CO <sub>2</sub> Reduction. Solar Rrl, 2021, 5, 2000478.                                                                                                                                              | 5.8  | 34        |
| 38 | Interfacing Iodineâ€Doped Hydrothermally Carbonized Carbon with <i>Escherichia coli</i> through an "Addâ€on―Mode for Enhanced Lightâ€Driven Hydrogen Production. Advanced Energy Materials, 2021, 11, 2100291.                                                           | 19.5 | 34        |
| 39 | <i>In situ</i> confined vertical growth of a 1D-CuCo <sub>2</sub> S <sub>4</sub> nanoarray on Ni foam covered by a 3D-PANI mesh layer to form a self-supporting hierarchical structure for high-efficiency oxygen evolution catalysis. Nanoscale, 2019, 11, 12326-12336. | 5.6  | 31        |
| 40 | Treated rape pollen: a metal-free visible-light-driven photocatalyst from nature for efficient water disinfection. Journal of Materials Chemistry A, 2019, 7, 9335-9344.                                                                                                 | 10.3 | 30        |
| 41 | In Situ Cu-Loaded Porous Boron Nitride Nanofiber as an Efficient Adsorbent for CO <sub>2</sub> Capture. ACS Sustainable Chemistry and Engineering, 2020, 8, 7454-7462.                                                                                                   | 6.7  | 30        |
| 42 | Panoramic insights into semi-artificial photosynthesis: origin, development, and future perspective. Energy and Environmental Science, 2022, 15, 529-549.                                                                                                                | 30.8 | 30        |
| 43 | In situ growth of Ag/Ag <sub>2</sub> O nanoparticles on g-C <sub>3</sub> N <sub>4</sub> by a natural carbon nanodot-assisted green method for synergistic photocatalytic activity. RSC Advances, 2016, 6, 3186-3197.                                                     | 3.6  | 29        |
| 44 | Constructing mesoporous Bi4Ti3O12 with enhanced visible light photocatalytic activity. Materials Letters, 2016, 183, 303-306.                                                                                                                                            | 2.6  | 24        |
| 45 | L-cysteine-assisted synthesis of hierarchical NiS <sub>2</sub> hollow spheres supported carbon nitride as photocatalysts with enhanced lifetime. Nanotechnology, 2017, 28, 115708.                                                                                       | 2.6  | 23        |
| 46 | Fabrication of noble-metal-free NiS2/g-C3N4 hybrid photocatalysts with visible light-responsive photocatalytic activities. Research on Chemical Intermediates, 2016, 42, 6483-6499.                                                                                      | 2.7  | 21        |
| 47 | Controlled self-assembly synthesis of CuCo2O4/rGO for improving the morphology-dependent electrochemical oxygen evolution performance. Applied Surface Science, 2019, 493, 710-718.                                                                                      | 6.1  | 21        |
| 48 | Nitrogenâ€Doped Bimetallic Carbideâ€Graphite Composite as Highly Active and Extremely Stable Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Advanced Functional Materials, 2022, 32, .                                                                 | 14.9 | 21        |
| 49 | Construction of brown mesoporous carbon nitride with a wide spectral response for high performance photocatalytic H <sub>2</sub> evolution. Inorganic Chemistry Frontiers, 2021, 9, 103-110.                                                                             | 6.0  | 17        |
| 50 | A Comparative Study of Hydrodeoxygenation of Furfural Over Fe/Pt(111) and Fe/Mo2C Surfaces. Topics in Catalysis, 2018, 61, 439-445.                                                                                                                                      | 2.8  | 13        |
| 51 | Controllable synthesis of magnetic Fe3O4 encapsulated semimetal Bi nanospheres with excellent stability and catalytic activity. Journal of Materials Science, 2018, 53, 13886-13899.                                                                                     | 3.7  | 11        |
| 52 | The effect of solvent parameters on properties of iron-based silica binary aerogels as adsorbents. Journal of Colloid and Interface Science, 2019, 549, 189-200.                                                                                                         | 9.4  | 9         |
| 53 | NiCoP nanoparticles encapsulated in cross-linked graphene aerogel to efficient hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics, 2020, 31, 13521-13530.                                                                               | 2.2  | 8         |
| 54 | All-solid-state Z-scheme heterostructures of 1T/2H-MoS2 nanosheets coupled V-doped hierarchical TiO2 spheres for enhanced photocatalytic activity. Materials Today Energy, 2022, 23, 100901.                                                                             | 4.7  | 8         |

## ZHIFENG JIANG

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Angstrom-sized tungsten carbide promoted platinum electrocatalyst for effective oxygen reduction reaction and resource saving. RSC Advances, 2015, 5, 96488-96494. | 3.6 | 6         |
| 56 | Surface-amino-induced boosting solar conversion of CO2 to CO over natural metal-free catalyst. Journal of CO2 Utilization, 2021, 54, 101773.                       | 6.8 | 4         |
| 57 | Recent Progress on Carbon Nitride and Its Hybrid Photocatalysts for CO <sub>2</sub> Reduction. Solar Rrl, 2021, 5, 2170022.                                        | 5.8 | 1         |