Viola Nolte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sequencing pools of individuals — mining genome-wide polymorphism data without big funding. Nature Reviews Genetics, 2014, 15, 749-763.	16.3	654
2	PoPoolation: A Toolbox for Population Genetic Analysis of Next Generation Sequencing Data from Pooled Individuals. PLoS ONE, 2011, 6, e15925.	2.5	556
3	Genomeâ€wide patterns of latitudinal differentiation among populations of <i><scp>D</scp>rosophila melanogaster</i> from <scp>N</scp> orth <scp>A</scp> merica. Molecular Ecology, 2012, 21, 4748-4769.	3.9	256
4	Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS Biology, 2019, 17, e3000128.	5.6	212
5	Adaptation of <i>Drosophila</i> to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Molecular Ecology, 2012, 21, 4931-4941.	3.9	194
6	A Genome-Wide, Fine-Scale Map of Natural Pigmentation Variation in Drosophila melanogaster. PLoS Genetics, 2013, 9, e1003534.	3.5	146
7	Massive Habitat-Specific Genomic Response in D. melanogaster Populations during Experimental Evolution in Hot and Cold Environments. Molecular Biology and Evolution, 2014, 31, 364-375.	8.9	138
8	Host adaptation to viruses relies on few genes with different cross-resistance properties. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5938-5943.	7.1	122
9	The recent invasion of natural <i>Drosophila simulans</i> populations by the P-element. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6659-6663.	7.1	101
10	Tempo and Mode of Transposable Element Activity in Drosophila. PLoS Genetics, 2015, 11, e1005406.	3.5	97
11	Patterns of Linkage Disequilibrium and Long Range Hitchhiking in Evolving Experimental <i>Drosophila melanogaster</i> Populations. Molecular Biology and Evolution, 2015, 32, 495-509.	8.9	82
12	Genome-wide patterns of natural variation reveal strong selective sweeps and ongoing genomic conflict in <i>Drosophila mauritiana</i> . Genome Research, 2013, 23, 99-110.	5.5	73
13	A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biology, 2018, 19, 119.	8.8	71
14	Molecular dissection of a natural transposable element invasion. Genome Research, 2018, 28, 824-835.	5.5	64
15	Temperature-Related Reaction Norms of Gene Expression: Regulatory Architecture and Functional Implications. Molecular Biology and Evolution, 2015, 32, 2393-2402.	8.9	57
16	Genome assembly and annotation of a Drosophila simulans strain from Madagascar. Molecular Ecology Resources, 2015, 15, 372-381.	4.8	46
17	High rate of translocation-based gene birth on the <i>Drosophila</i> Y chromosome. Proceedings of the United States of America, 2017, 114, 11721-11726.	7.1	35
18	Ancestral population reconstitution from isofemale lines as a tool for experimental evolution. Ecology and Evolution, 2016, 6, 7169-7175.	1.9	25

VIOLA NOLTE

#	Article	IF	CITATIONS
19	<i>Drosophila simulans</i> : A Species with Improved Resolution in Evolve and Resequence Studies. G3: Genes, Genomes, Genetics, 2017, 7, 2337-2343.	1.8	25
20	Rapid sex-specific adaptation to high temperature in Drosophila. ELife, 2020, 9, .	6.0	25
21	DNA Motifs Are Not General Predictors of Recombination in Two Drosophila Sister Species. Genome Biology and Evolution, 2019, 11, 1345-1357.	2.5	24
22	The impact of library preparation protocols on the consistency of allele frequency estimates in P ool― S eq data. Molecular Ecology Resources, 2016, 16, 118-122.	4.8	22
23	Neuronal Function and Dopamine Signaling Evolve at High Temperature in Drosophila. Molecular Biology and Evolution, 2020, 37, 2630-2640.	8.9	22
24	Parallel gene expression evolution in natural and laboratory evolved populations. Molecular Ecology, 2021, 30, 884-894.	3.9	15
25	Secondary Evolve and Resequencing: An Experimental Confirmation of Putative Selection Targets without Phenotyping. Genome Biology and Evolution, 2020, 12, 151-159.	2.5	14
26	Strong epistatic and additive effects of linked candidate SNPs for Drosophila pigmentation have implications for analysis of genome-wide association studies results. Genome Biology, 2017, 18, 126.	8.8	11
27	A 24 h Age Difference Causes Twice as Much Gene Expression Divergence as 100 Generations of Adaptation to a Novel Environment. Genes, 2019, 10, 89.	2.4	11
28	The genetic architecture of temperature adaptation is shaped by population ancestry and not by selection regime. Genome Biology, 2021, 22, 211.	8.8	11
29	Fitness effects for Ace insecticide resistance mutations are determined by ambient temperature. BMC Biology, 2020, 18, 157.	3.8	8
30	Long-Term Dynamics Among Wolbachia Strains During Thermal Adaptation of Their Drosophila melanogaster Hosts. Frontiers in Genetics, 2020, 11, 482.	2.3	7
31	Highly Parallel Genomic Selection Response in Replicated <i>Drosophila melanogaster </i> Populations with Reduced Genetic Variation. Genome Biology and Evolution, 2021, 13, .	2.5	4
32	Natural variation in Drosophila shows weak pleiotropic effects. Genome Biology, 2022, 23, 116.	8.8	4
33	Pool-GWAS on reproductive dormancy in <i>Drosophila simulans</i> suggests a polygenic architecture. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	1