
Aaron A King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554892/publications.pdf Version: 2024-02-01

AARON A KINC

#	Article	IF	CITATIONS
1	Bagged Filters for Partially Observed Interacting Systems. Journal of the American Statistical Association, 2023, 118, 1078-1089.	3.1	1
2	Markov genealogy processes. Theoretical Population Biology, 2022, 143, 77-91.	1.1	5
3	Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nature Communications, 2022, 13, 996.	12.8	16
4	A guide to state–space modeling of ecological time series. Ecological Monographs, 2021, 91, e01470.	5.4	97
5	The impact of infection-derived immunity on disease dynamics. Journal of Mathematical Biology, 2021, 83, 61.	1.9	4
6	Panel Data Analysis via Mechanistic Models. Journal of the American Statistical Association, 2020, 115, 1178-1188.	3.1	12
7	Choices and trade-offs in inference with infectious disease models. Epidemics, 2020, 30, 100383.	3.0	16
8	Age-structure and transient dynamics in epidemiological systems. Journal of the Royal Society Interface, 2019, 16, 20190151.	3.4	23
9	Duration of Immunity and Effectiveness of Diphtheria-Tetanus–Acellular Pertussis Vaccines in Children. JAMA Pediatrics, 2019, 173, 588.	6.2	24
10	The contribution of host cell-directed vs. parasite-directed immunity to the disease and dynamics of malaria infections. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22386-22392.	7.1	11
11	Commentary: resolving pertussis resurgence and vaccine immunity using mathematical transmission models. Human Vaccines and Immunotherapeutics, 2019, 15, 683-686.	3.3	6
12	Core pertussis transmission groups in England and Wales: A tale of two eras. Vaccine, 2018, 36, 1160-1166.	3.8	8
13	The impact of past vaccination coverage and immunity on pertussis resurgence. Science Translational Medicine, 2018, 10, .	12.4	76
14	Response to Comment on "The impact of past vaccination coverage and immunity on pertussis resurgence― Science Translational Medicine, 2018, 10, .	12.4	2
15	Seasonality in cholera dynamics: A rainfall-driven model explains the wide range of patterns in endemic areas. Advances in Water Resources, 2017, 108, 357-366.	3.8	15
16	Evolution-informed forecasting of seasonal influenza A (H3N2). Science Translational Medicine, 2017, 9, .	12.4	51
17	Monte Carlo profile confidence intervals for dynamic systems. Journal of the Royal Society Interface, 2017, 14, 20170126.	3.4	30
18	Infectious Disease Dynamics Inferred from Genetic Data via Sequential Monte Carlo. Molecular Biology and Evolution, 2017, 34, 2065-2084.	8.9	23

AARON A KING

#	Article	IF	CITATIONS
19	Climate-driven endemic cholera is modulated by human mobility in a megacity. Advances in Water Resources, 2017, 108, 367-376.	3.8	11
20	Cholera forecast for Dhaka, Bangladesh, with the 2015-2016 El Niño: Lessons learned. PLoS ONE, 2017, 12, e0172355.	2.5	16
21	Maternal pertussis immunisation: clinical gains and epidemiological legacy. Eurosurveillance, 2017, 22,	7.0	8
22	Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity. Parasitology, 2016, 143, 835-849.	1.5	25
23	Differential and enhanced response to climate forcing in diarrheal disease due to rotavirus across a megacity of the developing world. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4092-4097.	7.1	40
24	The pertussis enigma: reconciling epidemiology, immunology and evolution. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152309.	2.6	104
25	Statistical Inference for Partially Observed Markov Processes via the <i>R</i> Package pomp . Journal of Statistical Software, 2016, 69, .	3.7	173
26	Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. Proceedings of the United States of America, 2015, 112, 719-724.	7.1	100
27	Detecting Adaptive Evolution in Phylogenetic Comparative Analysis Using the Ornstein–Uhlenbeck Model. Systematic Biology, 2015, 64, 953-968.	5.6	87
28	Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150347.	2.6	185
29	Unraveling the Transmission Ecology of Polio. PLoS Biology, 2015, 13, e1002172.	5.6	52
30	Epidemiological Consequences of Imperfect Vaccines for Immunizing Infections. SIAM Journal on Applied Mathematics, 2014, 74, 1810-1830.	1.8	57
31	Epidemiological evidence for herd immunity induced by acellular pertussis vaccines. Proceedings of the United States of America, 2014, 111, E716-7.	7.1	31
32	Human birth seasonality: latitudinal gradient and interplay with childhood disease dynamics. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132438.	2.6	64
33	Evolution of acuteness in pathogen metapopulations: conflicts between "classical―and invasion-persistence trade-offs. Theoretical Ecology, 2014, 7, 299-311.	1.0	9
34	Time-varying, serotype-specific force of infection of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2694-702.	7.1	105
35	Fencing protected areas: A long-term assessment of the effects of reserve establishment and fencing on African mammalian diversity. Biological Conservation, 2014, 176, 162-171.	4.1	43
36	Can vaccine legacy explain the British pertussis resurgence?. Vaccine, 2013, 31, 5903-5908.	3.8	38

AARON A KING

#	Article	IF	CITATIONS
37	Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. Journal of the Royal Society Interface, 2013, 10, 20130414.	3.4	254
38	lmmune Boosting Explains Regime-Shifts in Prevaccine-Era Pertussis Dynamics. PLoS ONE, 2013, 8, e72086.	2.5	27
39	Highly localized sensitivity to climate forcing drives endemic cholera in a megacity. Proceedings of the United States of America, 2012, 109, 2033-2036.	7.1	117
40	Iterated filtering. Annals of Statistics, 2011, 39, .	2.6	85
41	Natural immune boosting in pertussis dynamics and the potential for long-term vaccine failure. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7259-7264.	7.1	136
42	Statistical Inference for Multi-Pathogen Systems. PLoS Computational Biology, 2011, 7, e1002135.	3.2	59
43	How Infections Propagate After Point-Source Outbreaks. Epidemiology, 2010, 21, 711-718.	2.7	21
44	Consequential classes of resources: Subtle global bifurcation with dramatic ecological consequences in a simple population model. Journal of Theoretical Biology, 2010, 263, 237-241.	1.7	6
45	Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. Journal of the Royal Society Interface, 2010, 7, 271-283.	3.4	222
46	Time Lags and the Balance of Positive and Negative Interactions in Driving Grassland Community Dynamics. American Naturalist, 2010, 175, 160-173.	2.1	21
47	Interactions between Behavioral and Lifeâ€History Tradeâ€Offs in the Evolution of Integrated Predatorâ€Defense Plasticity. American Naturalist, 2010, 176, 276-288.	2.1	42
48	Never mind the length, feel the quality: the impact of long-term epidemiological data sets on theory, application and policy. Trends in Ecology and Evolution, 2010, 25, 611-618.	8.7	29
49	Contact Network Structure Explains the Changing Epidemiology of Pertussis. Science, 2010, 330, 982-985.	12.6	186
50	Running for Your Life or Running for Your Dinner: What Drives Fiberâ€Type Evolution in Lizard Locomotor Muscles?. American Naturalist, 2009, 173, 543-553.	2.1	51
51	Evolution of Acute Infections and the Invasionâ€Persistence Tradeâ€Off. American Naturalist, 2009, 173, 446-455.	2.1	58
52	An Introduction to the Biocomplexity of Sanak Island, Western Gulf of Alaska. Pacific Science, 2009, 63, 673-709.	0.6	33
53	Time series analysis via mechanistic models. Annals of Applied Statistics, 2009, 3, .	1.1	144
54	Inapparent infections and cholera dynamics. Nature, 2008, 454, 877-880.	27.8	380

AARON A KING

#	Article	IF	CITATIONS
55	Modeling evolution and persistence of neurological viral diseases in wild populations. Mathematical Biosciences and Engineering, 2008, 5, 729-741.	1.9	8
56	Experimental support of the scaling rule for demographic stochasticity. Ecology Letters, 2006, 9, 537-547.	6.4	26
57	Inference for nonlinear dynamical systems. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18438-18443.	7.1	367
58	Nonlinear Stochastic Population Dynamics: The Flour Beetle Tribolium as an Effective Tool of Discovery. Advances in Ecological Research, 2005, , 101-141.	2.7	49
59	Anatomy of a chaotic attractor: Subtle model-predicted patterns revealed in population data. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 408-413.	7.1	32
60	Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution. American Naturalist, 2004, 164, 683-695.	2.1	1,212
61	Spatial mechanisms for coexistence of species sharing a common natural enemy. Theoretical Population Biology, 2003, 64, 431-438.	1.1	27
62	Explaining and predicting patterns in stochastic population systems. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1549-1553.	2.6	21
63	THE GEOMETRY OF A POPULATION CYCLE: A MECHANISTIC MODEL OF SNOWSHOE HARE DEMOGRAPHY. Ecology, 2001, 82, 814-830.	3.2	70
64	Sub-harmonic resonance and multi-annual oscillations in northern mammals: a non-linear dynamical systems perspective. Chaos, Solitons and Fractals, 2001, 12, 251-264.	5.1	18
65	A chaotic attractor in ecology: theory and experimental data. Chaos, Solitons and Fractals, 2001, 12, 219-234.	5.1	36
66	Lattice Effects Observed in Chaotic Dynamics of Experimental Populations. Science, 2001, 294, 602-605.	12.6	92
67	The rainbow bridge: Hamiltonian limits and resonance in predator-prey dynamics. Journal of Mathematical Biology, 1999, 39, 439-469.	1.9	56
68	Weakly dissipative predator-prey systems. Bulletin of Mathematical Biology, 1996, 58, 835-859.	1.9	22
69	Weakly dissipative predator-prey systems. Bulletin of Mathematical Biology, 1996, 58, 835-859.	1.9	2