Sanjiv Prashar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5548737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of a theranostic platform based on fibrous silica nanoparticles for the enhanced treatment of triple-negative breast cancer promoted by a combination of chemotherapeutic agents. , 2022, 137, 212823.		12
2	Tin-loaded mesoporous silica nanoparticles: Antineoplastic properties and genotoxicity assessment. , 2022, 137, 212819.		10
3	Nanohybrids based on F-doped titanium dioxides and carbon species with enhanced dual adsorption-photodegradation activity for water decontamination. Catalysis Communications, 2022, 169, 106477.	1.6	6
4	Synergistic Effect of Cu,F odoping of Titanium Dioxide for Multifunctional Catalytic and Photocatalytic Studies. Advanced Sustainable Systems, 2021, 5, 2000298.	2.7	8
5	lonic liquid-assisted synthesis of F-doped titanium dioxide nanomaterials with high surface area for multi-functional catalytic and photocatalytic applications. Applied Catalysis A: General, 2021, 613, 118029.	2.2	14
6	Ru(II) Polypyridine Complex-Functionalized Mesoporous Silica Nanoparticles as Photosensitizers for Cancer Targeted Photodynamic Therapy. ACS Applied Bio Materials, 2021, 4, 4394-4405.	2.3	26
7	Study of cancer cell cytotoxicity, internalization and modulation of growth factors induced by transferrin-conjugated formulations of metallodrug-functionalized mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2021, 323, 111238.	2.2	12
8	Multifunctional catalysts based on palladium nanoparticles supported on functionalized halloysites: Applications in catalytic C-C coupling, selective oxidation and dehalogenation reactions. Applied Clay Science, 2021, 214, 106272.	2.6	13
9	Nanostructured Metal Oxides Prepared from Schiff Base Metal Complexes: Study of the Catalytic Activity in Selective Oxidation and C–C Coupling Reactions. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1293-1305.	1.9	21
10	Copper-functionalized nanostructured silica-based systems: Study of the antimicrobial applications and ROS generation against gram positive and gram negative bacteria. Journal of Inorganic Biochemistry, 2020, 203, 110912.	1.5	15
11	Role of Folic Acid in the Therapeutic Action of Nanostructured Porous Silica Functionalized with Organotin(IV) Compounds against Different Cancer Cell Lines. Pharmaceutics, 2020, 12, 512.	2.0	14
12	Mesoporous silica nanoparticles functionalized with a dialkoxide diorganotin(IV) compound: In search of more selective systems against cancer cells. Microporous and Mesoporous Materials, 2020, 300, 110154.	2.2	24
13	Multifunctional Silica-Based Nanoparticles with Controlled Release of Organotin Metallodrug for Targeted Theranosis of Breast Cancer. Cancers, 2020, 12, 187.	1.7	46
14	Synthesis and characterization of alkenyl and alkyl substituted group 4 metallocene dichloride complexes: Applications in ethylene polymerization. Journal of Organometallic Chemistry, 2019, 899, 120890.	0.8	3
15	Palladium nanoparticles supported on silica, alumina or titania: greener alternatives for Suzuki–Miyaura and other C–C coupling reactions. Environmental Chemistry Letters, 2019, 17, 1585-1602.	8.3	49
16	Preparation and Study of the Antibacterial Applications and Oxidative Stress Induction of Copper Maleamate-Functionalized Mesoporous Silica Nanoparticles. Pharmaceutics, 2019, 11, 30.	2.0	39
17	Anticancer Applications of Nanostructured Silica-Based Materials Functionalized with Titanocene Derivatives: Induction of Cell Death Mechanism through TNFR1 Modulation. Materials, 2018, 11, 224.	1.3	26
18	Mesoporous SBA-15 modified with titanocene complexes and ionic liquids: interactions with DNA and other molecules of biological interest studied by solid state electrochemical techniques. Dalton Transactions, 2018, 47, 12914-12932.	1.6	11

#	Article	IF	CITATIONS
19	Modulation of the mechanism of apoptosis in cancer cell lines by treatment with silica-based nanostructured materials functionalized with different metallodrugs. Dalton Transactions, 2018, 47, 12284-12299.	1.6	23
20	Synthesis and study of the catalytic applications in C–C coupling reactions of hybrid nanosystems based on alumina and palladium nanoparticles. Inorganica Chimica Acta, 2017, 455, 645-652.	1.2	15
21	Anticancer Applications and Recent Investigations of Metallodrugs Based on Gallium, Tin and Titanium. Inorganics, 2017, 5, 4.	1.2	72
22	Suzuki-Miyaura C-C Coupling Reactions Catalyzed by Supported Pd Nanoparticles for the Preparation of Fluorinated Biphenyl Derivatives. Catalysts, 2017, 7, 76.	1.6	18
23	Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coordination Chemistry Reviews, 2016, 312, 67-98.	9.5	183
24	Curcumin loaded mesoporous silica: an effective drug delivery system for cancer treatment. Biomaterials Science, 2016, 4, 448-459.	2.6	107
25	Curcumin-loaded silica-based mesoporous materials: Synthesis, characterization and cytotoxic properties against cancer cells. Materials Science and Engineering C, 2016, 63, 393-410.	3.8	78
26	Photodegradation of organic pollutants in water and green hydrogen production via methanol photoreforming of doped titanium oxide nanoparticles. Science of the Total Environment, 2016, 563-564, 921-932.	3.9	35
27	A Short Overview on the Biomedical Applications of Silica, Alumina and Calcium Phosphate-based Nanostructured Materials. Current Medicinal Chemistry, 2016, 23, 4450-4467.	1.2	22
28	Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	35
29	Ether-Substituted Group 4 Metallocene Complexes: Cytostatic Effects and Applications in Ethylene Polymerization. Organometallics, 2015, 34, 2522-2532.	1.1	20
30	Anti ancer Applications of Titanoceneâ€Functionalised Nanostructured Systems: An Insight into Cell Death Mechanisms. Chemistry - A European Journal, 2014, 20, 10811-10828.	1.7	37
31	Dual application of Pd nanoparticles supported on mesoporous silica SBA-15 and MSU-2: supported catalysts for C–C coupling reactions and cytotoxic agents against human cancer cell lines. RSC Advances, 2014, 4, 54775-54787.	1.7	42
32	Alkenyl-substituted titanocene dichloride complexes: Stability studies, binding and cytotoxicity. Journal of Organometallic Chemistry, 2014, 769, 46-57.	0.8	6
33	Synthesis and structural characterization of novel three carbon atom bridged ansa-bis(indenyl)zirconocene complexes: Applications in ethylene polymerization. Polyhedron, 2014, 80, 129-133.	1.0	5
34	Naphthyl-substituted titanocene dichloride complexes: Synthesis, characterization and inÂvitro studies. Journal of Organometallic Chemistry, 2012, 700, 188-193.	0.8	12
35	Synthesis, characterization and inÂvitro biological studies of titanocene(IV) derivatives containing different carboxylato ligands. Journal of Organometallic Chemistry, 2012, 716, 201-207.	0.8	12
36	Study of the Anticancer Properties of Tin(IV) Carboxylate Complexes on a Panel of Human Tumor Cell Lines. ChemMedChem, 2012, 7, 301-310.	1.6	51

#	Article	IF	CITATIONS
37	Preliminary Study of the Anticancer Applications of Mesoporous Materials Functionalized with the Natural Product Betulinic Acid. ChemMedChem, 2012, 7, 670-679.	1.6	19
38	Inside Cover: Preliminary Study of the Anticancer Applications of Mesoporous Materials Functionalized with the Natural Product Betulinic Acid (ChemMedChem 4/2012). ChemMedChem, 2012, 7, 538-538.	1.6	0
39	Study of the cytotoxicity and particle action in human cancer cells of titanocene-functionalized materials with potential application against tumors. Journal of Inorganic Biochemistry, 2012, 106, 100-110.	1.5	51
40	One ligand different metal complexes: Biological studies of titanium(IV), tin(IV) and gallium(III) derivatives with the 2,6-dimethoxypyridine-3-carboxylato ligand. Journal of Organometallic Chemistry, 2011, 696, 3206-3213.	0.8	15
41	Synthesis, characterization and biological studies of alkenylâ€substituted titanocene(IV) carboxylate complexes. Applied Organometallic Chemistry, 2010, 24, 656-662.	1.7	19
42	Cyclopentadienyltin(IV) derivatives: Synthesis, characterization and study of their cytotoxic activities. Polyhedron, 2010, 29, 16-23.	1.0	16
43	Synthesis, characterization and biological studies of 1-D polymeric triphenyltin(IV) carboxylates. Journal of Organometallic Chemistry, 2010, 695, 1883-1890.	0.8	36
44	Study of the influence of the metal complex on the cytotoxic activity of titanocene-functionalized mesoporous materials. Journal of Materials Chemistry, 2010, 20, 806-814.	6.7	62
45	A New Generation of Anticancer Drugs: Mesoporous Materials Modified with Titanocene Complexes. Chemistry - A European Journal, 2009, 15, 5588-5597.	1.7	79
46	Synthesis, characterization and applications in ethylene polymerization of asymmetric ansa-titanocene complexes. Molecular structure of [Ti{Me2Si(η5-C5Me4)(η5-C5H3iPr)}Cl2]. Inorganica Chimica Acta, 2009, 362, 1042-1046.	1.2	7
47	MCM-41/ansa-zirconocene supported catalysts: Preparation, characterization and catalytic behaviour in ethylene polymerization. Journal of Molecular Catalysis A, 2009, 304, 107-116.	4.8	10
48	Anticancer drugs based on alkenyl and boryl substituted titanocene complexes. Journal of Organometallic Chemistry, 2009, 694, 1981-1987.	0.8	23
49	A novel alkenyl-substituted ansa-zirconocene complex with dual application as olefin polymerization catalyst and anticancer drug. Journal of Organometallic Chemistry, 2009, 694, 3032-3038.	0.8	15
50	Cytotoxic studies of substituted titanocene and ansa-titanocene anticancer drugs. Journal of Inorganic Biochemistry, 2008, 102, 1558-1570.	1.5	59
51	Viscoelasticity and macromolecular topology in single-site catalyzed polyethylene. Journal of Materials Science, 2008, 43, 1745-1748.	1.7	5
52	Synthesis, characterization and catalytic behaviour of ansa-zirconocene complexes containing tetraphenylcyclopentadienyl rings: X-ray crystal structures of [Zr{Me2Si(η5-C5Ph4)(η5-C5H3R)}Cl2] (R=H,) Tj ET	Qq Q & 0 rg	gB I 2Overlock
53	Study of the cytotoxic activity of di and triphenyltin(IV) carboxylate complexes. Journal of Inorganic Biochemistry, 2008, 102, 2087-2096.	1.5	81

⁵⁴Simple rhodiumâ€"chlorophosphine pre-catalysts for the ortho-arylation of phenols. Chemical
Communications, 2008, , 990.2.290

#	Article	IF	CITATIONS
55	Synthesis of Bulky Zirconocene Dichloride Compounds and Their Applications in Olefin Polymerization. Collection of Czechoslovak Chemical Communications, 2007, 72, 747-763.	1.0	7
56	Synthesis and Reactivity of Alkenylâ€Substituted Zirconocene Complexes and Their Application as Olefin Polymerisation Catalysts. European Journal of Inorganic Chemistry, 2007, 2007, 4445-4455.	1.0	18
57	Study of the cytotoxic activity of alkenyl-substituted ansa-titanocene complexes. Inorganic Chemistry Communication, 2007, 10, 748-752.	1.8	42
58	Synthesis of chiral unbridged zirconocene complexes: Applications in the polymerization of ethylene and propylene. Journal of Molecular Catalysis A, 2007, 268, 264-276.	4.8	23
59	Synthesis and catalytic applications of C1 symmetric group 4 ansa-metallocene complexes. Journal of Molecular Catalysis A, 2007, 264, 260-269.	4.8	16
60	Synthesis, structural characterization and reactivity of new tin bridged ansa-bis(cyclopentadiene) compounds: X-ray crystal structures of Me2Sn(C5Me4R-1)2 (R=H, SiMe3). Journal of Organometallic Chemistry, 2007, 692, 3057-3064.	0.8	3
61	3D-QSAR study of ansa-metallocene catalytic behavior in ethylene polymerization. Polymer, 2007, 48, 4663-4674.	1.8	30
62	Insights into group 4 and 5 ansa-bis(cyclopentadienyl) complexes with a single-atom bridge. Coordination Chemistry Reviews, 2006, 250, 133-154.	9.5	55
63	Synthesis and reactivity of new mono- and dinuclear niobium and tantalum imido complexes: X-ray crystal structure of [Ta(η5-C5H4SiMe3)Cl2{NC6Me4-4-(N(SiMe3)2)}]. Journal of Organometallic Chemistry, 2006, 691, 1361-1368.	0.8	10
64	Synthesis and reactivity of asymmetrically substituted ansa-bridged zirconocene complexes: X-ray crystal structures of [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R=Bun, But) and [Zr{Bun(H)C(η5-C5Me4)(η5-C5H4)}(CH2Ph)2]. Journal of Organometallic Chemistry, 2006, 691, 2924-2932.	0.8	14
65	Synthesis of niobocene imido cations: X-ray crystal structure of [Nb(NBut)(η5-C5H4SiMe3)2(CNBut)][BPh4]. Journal of Organometallic Chemistry, 2006, 691, 3652-3658.	0.8	9
66	Asymmetric Styrene Dimerization Using Mixed Palladium—Indium Catalysts ChemInform, 2006, 37, no.	0.1	0
67	Synthesis, hydrosilylation reactivity and catalytic properties of group 4 ansa-metallocene complexes. Polyhedron, 2005, 24, 1298-1313.	1.0	25
68	Asymmetric styrene dimerisation using mixed palladium–indium catalysts. Tetrahedron, 2005, 61, 9799-9807.	1.0	30
69	Novel Indenylzirconium Complexes as Supported Catalysts in the Polymerization of Ethylene. European Journal of Inorganic Chemistry, 2005, 2005, 2924-2934.	1.0	24
70	A Novel Constrained-Geometry Niobocene Complex with a Phosphanidoalkylcyclopentadienyl Ligand:Â [Nb(NtBu){(η5-C5H4)CMe2PPh-κP}{(η5-C5H4)CMe2PHPh}]. Organometallics, 2005, 24, 2061-2064.	1.1	8
71	Synthesis, Structural Characterisation and Reactivity of New Dinuclear Monocyclopentadienyl Imidoniobium and -tantalum Complexesâ^' X-ray Crystal Structures of [{Nb(η5-C5H4SiMe3)Cl2}2(μ-1,4-NC6H4N)], [{Ta(η5-C5Me5)Cl2}2(μ-1,4-NC6H4N)] and [{Ta(η5-C5Me5)(CH2SiMe3)2}2(μ-1,4-NC6H4N)]. European Journal of Inorganic Chemistry, 2004, 2004,	1.0	15
72	1299-1310. Isocyanide insertion reactivity of dinuclear niobium and tantalum imido complexes: X-ray crystal structure of [{Nb(η5-C5H4SiMe3)(CH2Ph)2}2(μ-1,4-NC6H4N)]. Journal of Organometallic Chemistry, 2004, 689, 1304-1314.	0.8	25

#	Article	IF	CITATIONS
73	Hydrosilylation in the Design and Functionalization of ansa-Metallocene Complexes. Organometallics, 2004, 23, 4062-4069.	1.1	33
74	New Synthon in the Design ofansa-Cyclopentadienyl Ligands with Variable Substitution at the Bridging Atom. Organometallics, 2004, 23, 5108-5111.	1.1	12
75	The Reactivity of Allyl and Olefin-Hydride Niobocene Derivatives Towards Isocyanides. X-ray Crystal Structure of [Nb(η5-C5H4SiMe3)2{η3-CH(R)CHCH(R)}] (R = SiMe2tBu). European Journal of Inorganic Chemistry, 2003, 2003, 2438-2445.	1.0	10
76	Synthesis and Reactivity of Alkylzirconium Complexes Incorporating Asymmetrically Substituted ansa Ligands â^' X-ray Crystal Structure of [Zr{Me2Si(η5-C5Me4)(η5-C5H3Me)}(CH2Ph)Cl]. European Journal of Inorganic Chemistry, 2003, 2003, 2626-2632.	1.0	20
77	Sandwich and Half andwich (Imido)niobium Complexes. European Journal of Inorganic Chemistry, 2003, 2003, 17-28.	1.0	14
78	Sandwich and Half-Sandwich (Imido)niobium Complexes. ChemInform, 2003, 34, no.	0.1	0
79	Synthesis and reactivity of alkynyl niobocene complexes. Journal of Organometallic Chemistry, 2003, 670, 123-131.	0.8	8
80	Group 4 metallocene complexes incorporating vinyl or allyl substituted ansa ligands. X-Ray crystal structures of [Zr{Me(CH2ĩCH)Si(η5-C5Me4)2}Cl2], [Zr{Me(CH2ĩCHCH2)Si(η5-C5H4)2}Cl2] and [Zr{Me(CH2ĩCHCH2)Si(η5-C5Me4)(η5-C5H4)}Cl2]. Journal of Organometallic Chemistry, 2003, 683, 11-22.	0.8	32
81	Reactivity of Zirconium Complexes Incorporating Asymmetrically SubstitutedansaLigands and Their Use as Catalysts in Olefin Polymerization. X-ray Crystal Structures of [Me2Si(η5-C5Me4)(η5-C5H3R)]ZrCl2(R = Et,iPr). Organometallics, 2002, 21, 2460-2467.	1.1	31
82	[(η5-C5Me4)SiMe2(NtertBu)]TiCl2 as Pre-Catalyst for the Copolymerisation of Ethylene with 5,7-Dimethylocta-1,6-diene and with 3,7-Dimethylocta-1,6-diene. Macromolecular Chemistry and Physics, 2002, 203, 139-145.	1.1	18
83	New Group 4 Metallocene and Niobocene Complexes Containing Phosphane-Functionalizedansa-Ligands. European Journal of Inorganic Chemistry, 2002, 2002, 2470-2476.	1.0	19
84	Synthesis and electrochemistry of niobium complexes incorporating asymmetrically substituted ansa-ligands. Journal of Organometallic Chemistry, 2002, 655, 63-69.	0.8	13
85	Niobium, titanium, zirconium and hafnium complexes incorporating germanium bridged ansa ligands. X-Ray crystal structures of [Zr{Me2Ge(η5-C5Me4)2}Cl2] and [M{Me2Ge(η5-C5Me4)(η5-C5H4)}Cl2] (M=Zr, Hf). Journal of Organometallic Chemistry, 2002, 656, 129-138.	0.8	29
86	Niobium and Zirconium Complexes Incorporating Asymmetrically SubstitutedansaLigands. X-ray Crystal Structures of [Me2Si(η5-C5Me4)(η5-C5H3R)]Nb(NtBu)Cl (R = Me,iPr) and [Me2Si(η5-C5Me4)(η5-C5H3R)]ZrCl2(R = H, Me). Organometallics, 2001, 20, 71-78.	1.1	35
87	Synthesis, Structure, and Reactivity of Niobocene Imido Complexes Containing Alkynyl Ligands. X-ray Crystal Structure of [Nb(NPh)(η5-C5H4SiMe3)2(C⋮CPh)]. Organometallics, 2001, 20, 3132-3138.	1.1	14
88	The synthesis of alkyl niobocene imido complexes and the X-ray crystal structure of [Nb(î~O)Cp2Me] (Cp=η5-C5H5). Journal of Organometallic Chemistry, 2001, 631, 151-156.	0.8	9
89	Syntheses and crystal structures of two ytterbocene complexes [Yb(η-Cp′′)2I(THF)] and [Yb(η-Cp′′)2(μ-Cl)2Li(THF)2] (Cp′′=C5H3(SiMe3)2-1,3). Journal of Organometallic Chemistry, 2000,	6 13 , 105	-118.
90	Sandwich and half-sandwich niobium imido complexes: X-ray crystal structure of [Nb(ĩ`NAr)Cpâ€22Cl] (Cpâ€2=η5-C5H4SiMe3, Ar=C6H4OMe-4). Journal of Organometallic Chemistry, 1999, 585, 154-161.	0.8	17

#	Article	IF	CITATIONS
91	New ansa-Niobocene Complexes. X-ray Crystal Structure of [Me2Si(î·5-C5H4)2]Nb(NtBu)Cl. Stereoselective Synthesis of meso-[Me2Si(η5-C5H3SiMe3)2]Nb(NtBu)Cl. Organometallics, 1998, 17, 5454-5459.	1.1	17
92	Synthesis and Reactivity of Novel Niobocene Complexes Containing Allyl or 1-Azaallyl Ligands. X-ray Crystal Structure of [Li{I·3-N(SiMe3)C(tBu)CH2}]3. Organometallics, 1998, 17, 5874-5879.	1.1	19
93	Insertion reactions of heterocumulenes into the niobium-hydride bond of isocyanide and carbonyl niobocene complexes. Inorganica Chimica Acta, 1997, 259, 101-105.	1.2	13
94	Studies on the Insertion Reactions of Activated Alkynes into Nbâ^'H Bonds in Hydrideâ^'Niobocene Complexes. X-ray Crystal Structures of Nb(η5-C5H4SiMe3)2(H)[η2-RO2C(H)C(H)CO2R] (R = Me or tBu). Organometallics, 1996, 15, 5507-5513.	1.1	25
95	ansa-Niobocene Complexes:Â Synthesis and Characterization of Novel Complexes [Me2Si(η5-C5H4)2]NbCl2and [Me2Si(η5-C5H4)2]NbCl(RC⋮CR) (R = Me, Ph). X-ray Crystal Structure of [Me2Si(η5-C5H4)2]NbCl(MeC⋮CMe). Organometallics, 1996, 15, 3241-3243.	1.1	30
96	Synthesis and characterisation of lanthanide(II) aryloxides including the first structurally characterised europium(II) compound [Eu(OC6H2But2-2,6-Me-4)2(thf)3]·thf (thf = tetrahydrofuran). Journal of the Chemical Society Dalton Transactions, 1995, , 1427-1433.	1.1	43
97	The first examples of intermolecular weak (agostic) γ-methyl-metal interactions in organolanthanide complexes: The synthesis and X-ray structures of [{Yb(ÎCPâ€3)2}â^ž.] and [{Eu(ÎCPâ€3)2}â^ž] [CPâ€3î—» C5H. Journal of Organometallic Chemistry, 1992, 437, 177-189.	3(SØMæ3)2	-1,84.
0.9	Organolanthanide hydroxides; the synthesis and crystal structures of the samarocene and v tterbacene hydroxides [SmCn2863(1/4 OH)2] and [YbCn2863(1/4 OH)2] [Cn863 – $\hat{1}$ 5 C5 H2(SiMo2)2 1 2; Cn86	2 _d ਙ C5L	J46ib102]

98 ytterbocene hydroxides [SmCp2″(μ-OH)2] and [YbCp2′(μ-OH)2][Cp″ = η5-C5 H3(SiMe3)2-1,3; Cp′ =Ô·ã-C5H4SitMe3].
Journal of Organometallic Chemistry, 1991, 413, 79-90.