
Matthew J Lamarche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5548429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling. Clinical Cancer Research, 2021, 27, 342-354.	3.2	88
2	SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Scientific Reports, 2021, 11, 1399.	1.6	37
3	Time-resolved phosphoproteomics reveals scaffolding and catalysis-responsive patterns of SHP2-dependent signaling. ELife, 2021, 10, .	2.8	17
4	Identification of TNO155, an Allosteric SHP2 Inhibitor for the Treatment of Cancer. Journal of Medicinal Chemistry, 2020, 63, 13578-13594.	2.9	111
5	Resistance to allosteric SHP2 inhibition in FCFR-driven cancers through rapid feedback activation of FGFR. Oncotarget, 2020, 11, 265-281.	0.8	27
6	Tumor Intrinsic Efficacy by SHP2 and RTK Inhibitors in KRAS-Mutant Cancers. Molecular Cancer Therapeutics, 2019, 18, 2368-2380.	1.9	34
7	Optimization of Fused Bicyclic Allosteric SHP2 Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 1781-1792.	2.9	58
8	6-Amino-3-methylpyrimidinones as Potent, Selective, and Orally Efficacious SHP2 Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 1793-1802.	2.9	61
9	SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nature Medicine, 2018, 24, 512-517.	15.2	155
10	Dual Allosteric Inhibition of SHP2 Phosphatase. ACS Chemical Biology, 2018, 13, 647-656.	1.6	109
11	Structural reorganization of SHP2 by oncogenic mutations and implications for oncoprotein resistance to allosteric inhibition. Nature Communications, 2018, 9, 4508.	5.8	106
12	Identification of an allosteric benzothiazolopyrimidone inhibitor of the oncogenic protein tyrosine phosphatase SHP2. Bioorganic and Medicinal Chemistry, 2017, 25, 6479-6485.	1.4	43
13	Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor. Journal of Medicinal Chemistry, 2016, 59, 7773-7782.	2.9	229
14	Structural and Functional Consequences of Three Cancer-Associated Mutations of the Oncogenic Phosphatase SHP2. Biochemistry, 2016, 55, 2269-2277.	1.2	55
15	Antibacterial and Solubility Optimization of Thiomuracin A. Journal of Medicinal Chemistry, 2016, 59, 6920-6928.	2.9	14
16	Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 2016, 535, 148-152.	13.7	674
17	Synthesis of ciprofloxacin dimers for evaluation of bacterial permeability in atypical chemical space. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3468-3475.	1.0	23
18	2-Alkyloxazoles as potent and selective PI4KIIIÎ ² inhibitors demonstrating inhibition of HCV replication. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3714-3718.	1.0	20

MATTHEW J LAMARCHE

#	Article	IF	CITATIONS
19	Efficacy of LFF571 in a Hamster Model of Clostridium difficile Infection. Antimicrobial Agents and Chemotherapy, 2012, 56, 4459-4462.	1.4	56
20	Antibiotic Optimization and Chemical Structure Stabilization of Thiomuracin A. Journal of Medicinal Chemistry, 2012, 55, 6934-6941.	2.9	34
21	Discovery of LFF571: An Investigational Agent for <i>Clostridium difficile</i> Infection. Journal of Medicinal Chemistry, 2012, 55, 2376-2387.	2.9	134
22	4-Aminothiazolyl Analogues of GE2270 A: Antibacterial Lead Finding. Journal of Medicinal Chemistry, 2011, 54, 2517-2521.	2.9	38
23	Antibacterial Optimization of 4-Aminothiazolyl Analogues of the Natural Product GE2270 A: Identification of the Cycloalkylcarboxylic Acids. Journal of Medicinal Chemistry, 2011, 54, 8099-8109.	2.9	37
24	4-Aminothiazolyl analogs of GE2270 A: Design, synthesis and evaluation of imidazole analogs. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3210-3215.	1.0	20
25	Ribosomally Synthesized Thiopeptide Antibiotics Targeting Elongation Factor Tu. Journal of the American Chemical Society, 2009, 131, 5946-5955.	6.6	165
26	Identification and characterization of amino-piperidinequinolones and quinazolinones as MCHr1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2621-2627.	1.0	28
27	Discodermolide analogues as the chemical component of combination bacteriolytic therapy. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3623-3626.	1.0	33
28	Identification of ortho-amino benzamides and nicotinamides as MCHr1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4174-4179.	1.0	18
29	Design, Synthesis, and Evaluation of Carbamate-Substituted Analogues of (+)-Discodermolide. Organic Letters, 2005, 7, 311-314.	2.4	35
30	Discovery and Characterization of Aminopiperidinecoumarin Melanin Concentrating Hormone Receptor 1 Antagonists. Journal of Medicinal Chemistry, 2005, 48, 5888-5891.	2.9	50
31	Design, Synthesis, and Evaluation of Analogues of (+)-14-Normethyldiscodermolide. Organic Letters, 2005, 7, 315-318.	2.4	27
32	Design, synthesis and cytotoxicity of 7-deoxy aryl discodermolide analogues. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2335-2338.	1.0	21
33	Solution Structure of (+)-Discodermolide. Organic Letters, 2001, 3, 695-698.	2.4	52
34	The relationship between Taxol and (+)-discodermolide: synthetic analogs and modeling studies. Chemistry and Biology, 2001, 8, 843-855.	6.2	82
35	Gram-Scale Synthesis of (+)-Discodermolide. Organic Letters, 2000, 2, 1983-1983.	2.4	16
36	Evolution of a Gram-Scale Synthesis of (+)-Discodermolide. Journal of the American Chemical Society, 2000, 122, 8654-8664.	6.6	239

3

#	Article	IF	CITATIONS
37	Gram-Scale Synthesis of (+)-Discodermolide. Organic Letters, 1999, 1, 1823-1826.	2.4	133
38	A novel approach to oligocyclopropane structural units. Tetrahedron Letters, 1997, 38, 2057-2060.	0.7	24