Peter W Abel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5548403/publications.pdf

Version: 2024-02-01

81	2,071	24 h-index	45
papers	citations		g-index
83	83	83	1772
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	TH17 cells and corticosteroid insensitivity in severe asthma. Journal of Allergy and Clinical Immunology, 2022, 149, 467-479.	1.5	31
2	Airway relaxation mechanisms and structural basis of osthole for improving lung function in asthma. Science Signaling, 2020, 13 , .	1.6	6
3	TGF- \hat{l}^21 -induced miR-424 promotes pulmonary myofibroblast differentiation by targeting Slit2 protein expression. Biochemical Pharmacology, 2020, 180, 114172.	2.0	23
4	Progressive cardiorespiratory dysfunction in Kv1.1 knockout mice may provide temporal biomarkers of pending sudden unexpected death in epilepsy (SUDEP): The contribution of orexin. Epilepsia, 2020, 61, 572-588.	2.6	19
5	Airway Relaxation Mechanisms and Structural Basis of Osthole to Improve Lung Function in Asthma. FASEB Journal, 2020, 34, 1-1.	0.2	O
6	Transforming growth factor (TGF)- \hat{l}^21 -induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death and Disease, 2019, 10, 670.	2.7	97
7	Upregulated P-Rex1 exacerbates human airway smooth muscle hyperplasia in asthma. Journal of Allergy and Clinical Immunology, 2019, 143, 778-781.e5.	1.5	3
8	TGFâ€Î²1â€induced miRâ€424 Mediates Pulmonary Myofibroblast Differentiation via Targeting Slit2. FASEB Journal, 2019, 33, 681.9.	0.2	1
9	Respiratory dysfunction progresses with age in <i>Kcna1</i> â€null mice, a model of sudden unexpected death in epilepsy. Epilepsia, 2018, 59, 345-357.	2.6	52
10	Up-regulated miR-133a orchestrates epithelial-mesenchymal transition of airway epithelial cells. Scientific Reports, 2018, 8, 15543.	1.6	14
11	Targeting Androgen Receptor and TRAIL: A Novel Treatment Paradigm for Breast Cancer. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR35-3.	0.0	О
12	Targeting Androgen Receptor and TRAIL: A Novel Treatment Paradigm for Breast Cancer. FASEB Journal, 2018, 32, 835.10.	0.2	0
13	Pharmacokinetic Modeling of Acetylcholineâ€Induced Contraction of Mouse Trachea. FASEB Journal, 2018, 32, 834.1.	0.2	O
14	Upregulation of RGS2: a new mechanism for pirfenidone amelioration of pulmonary fibrosis. Respiratory Research, 2016, 17, 103.	1.4	24
15	Phorbol myristate acetate suppresses breast cancer cell growth via down-regulation of P-Rex1 expression. Protein and Cell, 2016, 7, 445-449.	4.8	9
16	Regulator of G-Protein Signaling 2 Repression Exacerbates Airway Hyper-Responsiveness and Remodeling in Asthma. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 42-49.	1.4	24
17	RGS2 Repression Exacerbates Airway Hyperresponsiveness and Remodeling in Asthma. FASEB Journal, 2015, 29, 775.10.	0.2	O
18	An Efficient Synthesis of 4(5)-Benzyl-l-histidines Employing Catalytic Transfer Hydrogenolysis at Elevated Temperatures. Synthesis, 2014, 46, 515-521.	1.2	4

#	Article	IF	Citations
19	Identification of upregulated phosphoinositide 3-kinase \hat{l}^3 as a target to suppress breast cancer cell migration and invasion. Biochemical Pharmacology, 2013, 85, 1454-1462.	2.0	25
20	PKCεâ€mediated Pâ€Rex1 downregulation suppresses breast cancer cell proliferation. FASEB Journal, 2013, 27, 1096.10.	0.2	0
21	RGS2 repression increases susceptibility of mice to interleukin―13â€induced airway hyperresponsiveness. FASEB Journal, 2013, 27, 1095.8.	0.2	0
22	Effects of hypoxia on regulators of Gâ€protein signaling 2 (RGS2) regulation of pulmonary arterial constriction. FASEB Journal, 2013, 27, 1141.3.	0.2	0
23	Targeting Phosphoinositide 3-Kinase \hat{I}^3 in Airway Smooth Muscle Cells to Suppress Interleukin-13-Induced Mouse Airway Hyperresponsiveness. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 305-311.	1.3	20
24	Regulator of G protein signaling 2 is a key modulator of airway hyperresponsiveness. Journal of Allergy and Clinical Immunology, 2012, 130, 968-976.e3.	1.5	40
25	αâ€Adrenoceptor Assays. Current Protocols in Pharmacology, 2012, 59, Unit 4.5.	4.0	0
26	Epigenetic repression of regulator of Gâ€protein signaling 2 promotes androgenâ€independent prostate cancer cell growth. International Journal of Cancer, 2012, 130, 1521-1531.	2.3	42
27	Regulator of G Protein Signaling 2 (RGS2) regulates pulmonary vasoconstriction. FASEB Journal, 2012, 26, 842.9.	0.2	0
28	Targeting phosphoinositide 3â€kinase γ in airway smooth muscle cells to suppress interleukinâ€13â€induced mouse airway hyperresponsiveness. FASEB Journal, 2012, 26, 667.4.	0.2	0
29	Epigenetic Regulation of Phosphatidylinositol 3,4,5-Triphosphate-dependent Rac Exchanger 1 Gene Expression in Prostate Cancer Cells. Journal of Biological Chemistry, 2011, 286, 25813-25822.	1.6	28
30	Protein kinase C (PKC) regulates phosphatidylinositolâ€3,4,5â€triphosphateâ€dependent Rac exchange factor 1 (Pâ€Rex1) gene expression through a histone deacetylase interaction with Sp1 in prostate cancer. FASEB Journal, 2011, 25, 1090.2.	0.2	0
31	DHHC proteinâ€dependent palmitoylation protects regulator of Gâ€protein signaling 4 from proteasome degradation. FEBS Letters, 2010, 584, 4570-4574.	1.3	25
32	Phosphoinositide 3-Kinase \hat{I}^3 Regulates Airway Smooth Muscle Contraction by Modulating Calcium Oscillations. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 703-709.	1.3	32
33	$G\hat{l}^2\hat{l}^3$ Signaling Promotes Breast Cancer Cell Migration and Invasion. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 393-403.	1.3	58
34	GÎ ² Î ³ Signaling Promotes Breast Cancer Cell Migration and Invasion. FASEB Journal, 2010, 24, 964.16.	0.2	0
35	Breast Cancer Migration and Invasion Depend on Proteasome Degradation of Regulator of G-Protein Signaling 4. Cancer Research, 2009, 69, 5743-5751.	0.4	116
36	Effect of interleukin 13 on bronchial hyperresponsiveness and the bronchoprotective effect of \hat{l}^2 -adrenergic bronchodilators and corticosteroids. Annals of Allergy, Asthma and Immunology, 2009, 102, 190-197.	0.5	11

#	Article	IF	Citations
37	Characterization of the $\hat{l}\pm 1$ -adrenoceptor subtype activating extracellular signal-regulated kinase in submandibular gland acinar cells. European Journal of Pharmacology, 2008, 578, 349-358.	1.7	10
38	Salcatonin., 2008, , 1-7.		0
39	Pentoxifylline. , 2008, , 1-18.		3
40	Expression of genes encoding antimicrobial and bradykinin-related peptides in skin of the stream brown frog Rana sakuraii. Peptides, 2007, 28, 505-514.	1.2	51
41	The role of voltage-gated potassium channels in the regulation of mouse uterine contractility. Reproductive Biology and Endocrinology, 2007, 5, 41.	1.4	42
42	Adrenomedullin., 2007,, 1-7.		0
43	Hyperkalemia. , 2007, , 1-4.		0
44	Nâ€terminal bisâ€(2â€Chloroethyl)amino and Fluorosulphonyl Analogues of Calcitonin Geneâ€Related Peptide(8â€37): Irreversible Antagonists at Calcitonin Geneâ€Related Peptide Receptors. Chemical Biology and Drug Design, 2007, 70, 216-226.	1.5	4
45	Isoproterenol., 2007, , 1-7.		0
46	Compound 1., 2007, , 1-4.		0
47	BIBN4096BS., 2007, , 1-5.		0
48	Calcitonin Gene-Related Peptide. , 2007, , 1-4.		0
49	Human alphaCGRP-8-37., 2007, , 1-6.		0
50	Pharmacological Characterization of Novel \hat{I} ±-Calcitonin Gene-Related Peptide (CGRP) Receptor Peptide Antagonists That Are Selective for Human CGRP Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 749-757.	1.3	16
51	Expression of two poreâ€domain potassium channels in mouse myometrial cells. FASEB Journal, 2006, 20, A327.	0.2	0
52	Characterization of the $\hat{l}\pm 1$ $\hat{a}\in a$ drenoceptor subtype ($\hat{l}\pm 1$ $\hat{a}\in AR$) and its signaling pathway for activation of ERK 1/2 in submandibular gland acinar cells. FASEB Journal, 2006, 20, A255.	0.2	0
53	Identification of a Rat RAMP2 Isoform. FASEB Journal, 2006, 20, A695.	0.2	O
54	Bradykinin-related peptides and tryptophyllins in the skin secretions of the most primitive extant frog, Ascaphus truei. General and Comparative Endocrinology, 2005, 143, 193-199.	0.8	36

#	Article	IF	Citations
55	Submandibular Gland Acinar Cells Express Multiple $\hat{l}\pm 1$ -Adrenoceptor Subtypes. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 364-372.	1.3	12
56	Modifications to the N-Terminus but Not the C-Terminus of Calcitonin Gene-Related Peptide (8-37) Produce Antagonists with Increased Affinity. Journal of Medicinal Chemistry, 2003, 46, 2427-2435.	2.9	22
57	Tonic Inhibitory Role for cAMP in $\hat{l}\pm 1$ a-Adrenergic Receptor Coupling to Extracellular Signal-Regulated Kinases 1/2. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 247-256.	1.3	17
58	Relationship between $\hat{l}\pm 1$ -Adrenergic Receptor-Induced Contraction and Extracellular Signal-Regulated Kinase Activation in the Bovine Inferior Alveolar Artery. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 403-411.	1.3	16
59	Effects of Trout Endothelin on the Motility of Gastrointestinal Smooth Muscle from the Trout and Rat. General and Comparative Endocrinology, 2001, 123, 156-162.	0.8	4
60	Purification and characterization of antimicrobial and vasorelaxant peptides from skin extracts and skin secretions of the North American pig frog Rana grylio. Regulatory Peptides, 2000, 90, 53-60.	1.9	53
61	Structureâ^Activity Studies on Position 14 of Human α-Calcitonin Gene-Related Peptide. Journal of Medicinal Chemistry, 1997, 40, 3071-3076.	2.9	15
62	Differential actions of lamprey peptide methionine-tyrosine at Y1 and Y2 neuropeptide Y receptors. Regulatory Peptides, 1994, 54, 489-493.	1.9	1
63	Neuropeptide ?-(l-9)-Peptide: A Major Product of the Posttranslational Processing of ?-Preprotachykinin in Rat Tissues. Journal of Neurochemistry, 1993, 61, 1231-1235.	2.1	11
64	Synthesis and biological activity of C-terminally truncated fragments of human-alphacalcitonin gene-related peptide. Journal of Medicinal Chemistry, 1993, 36, 2536-2541.	2.9	26
65	Primary structure and pharmacological activity of a nonapeptide related to neuromedin U isolated from chicken intestine. Peptides, 1991, 12, 809-812.	1.2	50
66	Isolation, structural characterization and pharmacological activity of dog neuromedin U. Peptides, 1991, 12, 11-15.	1.2	59
67	Evidence that neuromedin U may regulate gut motility in reptiles but not in mammals. European Journal of Pharmacology, 1989, 171, 255-257.	1.7	17
68	Neuropeptide Y: vasoconstrictor effects and possible role in cerebral vasospasm after experimental subarachnoid hemorrhage. Brain Research, 1988, 463, 250-258.	1.1	30
69	High levels of NPY in rabbit cerebrospinal fluid and immunohistochemical analysis of possible sources. Brain Research, 1988, 463, 259-267.	1.1	33
70	Vasodilator drug effects on internal mammary artery and saphenous vein grafts. Journal of the American College of Cardiology, 1988, 11, 1317-1324.	1.2	15
71	Neuropeptide Y Potentiates Contraction and Inhibits Relaxation of Rabbit Coronary Arteries. Journal of Cardiovascular Pharmacology, 1987, 9, 675-681.	0.8	74
72	Vasopressin receptor mediated contraction and [3H]inositol metabolism in rat tail artery. European Journal of Pharmacology, 1987, 135, 1-10.	1.7	14

#	ARTICLE	IF	CITATION
73	$\hat{l}\pm 1$ Adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle. Nature, 1987, 329, 333-335.	13.7	492
74	Relationship of alpha-1 Adrenergic Receptor Occupancy to Tissue Response. Receptors, 1987, , 267-324.	0.2	5
75	Regulation of \hat{I}^2 -adrenoceptor density and function in rat vas deferens. European Journal of Pharmacology, 1986, 122, 221-229.	1.7	6
76	Contraction and Relaxation of Rabbit Basilar Artery by Thiopental. Neurosurgery, 1985, 17, 433-435.	0.6	5
77	Binding of agonists and antagonists to ?-adrenoceptors in rat vas deferens: relationship to functional response. Naunyn-Schmiedeberg's Archives of Pharmacology, 1985, 331, 324-333.	1.4	19
78	? 1- and? 2-adrenoceptor binding and functional response in right and left atria of rat heart. Naunyn-Schmiedeberg's Archives of Pharmacology, 1985, 330, 193-202.	1.4	98
79	Activation of $\hat{l}\pm 1$ -adrenoceptors increases [3H]inositol metabolism in rat vas deferens and caudal artery. European Journal of Pharmacology, 1985, 116, 145-152.	1.7	59
80	Relationship between ?1-adrenoreceptor density and functional response of rat vas deferens. Naunyn-Schmiedeberg's Archives of Pharmacology, 1984, 327, 238-246.	1.4	23
81	Norepinephrine produces tension through electromechanical coupling in rabbit ear artery. European Journal of Pharmacology, 1981, 72, 87-91.	1.7	29