
Juchuan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5548111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy Storage: Lattice ell Orientation Disorder in Complex Spinel Oxides (Adv. Energy Mater. 4/2017). Advanced Energy Materials, 2017, 7, .	19.5	0
2	Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy and Environmental Science, 2017, 10, 1150-1166.	30.8	267
3	In situ stress measurements during electrochemical cycling of lithium-rich cathodes. Journal of Power Sources, 2017, 364, 383-391.	7.8	18
4	Lattice ell Orientation Disorder in Complex Spinel Oxides. Advanced Energy Materials, 2017, 7, 1601950.	19.5	21
5	High magnesium mobility in ternary spinel chalcogenides. Nature Communications, 2017, 8, 1759.	12.8	212
6	In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries. Nano Letters, 2016, 16, 3760-3767.	9.1	278
7	Interfacial Stability of Li Metal–Solid Electrolyte Elucidated via in Situ Electron Microscopy. Nano Letters, 2016, 16, 7030-7036.	9.1	309
8	Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries. Advanced Energy Materials, 2016, 6, 1600053.	19.5	46
9	A cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes. Journal of Materials Chemistry A, 2015, 3, 13350-13356.	10.3	51
10	Using all energy in a battery. Science, 2015, 347, 131-132.	12.6	99
11	Lithiumâ€ion Batteries: Solid Electrolyte: the Key for Highâ€Voltage Lithium Batteries (Adv. Energy Mater.) Tj ET	Qq1_1_0.7	84314 rgBT
12	Practical, cost-effective and large-scale production of nitrogen-doped porous carbon particles and their use as metal-free electrocatalysts for oxygen reduction. Electrochimica Acta, 2015, 165, 29-35.	5.2	26
13	Effects of stress on lithium transport in amorphous silicon electrodes for lithium-ion batteries. Nano Energy, 2015, 13, 192-199.	16.0	58
14	The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes. Chemistry of Materials, 2015, 27, 5531-5542.	6.7	347
15	Unravelling the Impact of Reaction Paths on Mechanical Degradation of Intercalation Cathodes for Lithium-Ion Batteries. Journal of the American Chemical Society, 2015, 137, 13732-13735.	13.7	61
16	Asymmetric Rate Behavior of Si Anodes for Lithiumâ€lon Batteries: Ultrafast Deâ€Lithiation versus Sluggish Lithiation at High Current Densities. Advanced Energy Materials, 2015, 5, 1401627.	19.5	50
17	Solid Electrolyte: the Key for Highâ€Voltage Lithium Batteries. Advanced Energy Materials, 2015, 5, 1401408.	19.5	544
18	Nanocomposite of N-Doped TiO ₂ Nanorods and Graphene as an Effective Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2014, 6, 21978-21985.	8.0	76

Juchuan Li

#	Article	IF	CITATIONS
19	Siliconâ€Based Nanomaterials for Lithiumâ€lon Batteries: A Review. Advanced Energy Materials, 2014, 4, 1300882.	19.5	1,250
20	Stacked-cup-type MWCNTs as highly stable lithium-ion battery anodes. Journal of Applied Electrochemistry, 2014, 44, 179-187.	2.9	15
21	A one-pot hydrothermal synthesis of 3D nitrogen-doped graphene aerogels-supported NiS2 nanoparticles as efficient electrocatalysts for the oxygen-reduction reaction. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	23
22	Air-stable, high-conduction solid electrolytes of arsenic-substituted Li ₄ SnS ₄ . Energy and Environmental Science, 2014, 7, 1053-1058.	30.8	326
23	PANI-Sensitized N-TiO ₂ Inverse Opals with Enhanced Photoelectrochemical Performance and Photocatalytic Activity. Journal of the Electrochemical Society, 2014, 161, H332-H336.	2.9	14
24	Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiOx (x < 2) selective solar thermal absorbers. Journal of Applied Physics, 2014, 116, .	2.5	15
25	Supramolecular self-assembly of three-dimensional polyaniline and polypyrrole crystals. Chemical Communications, 2014, 50, 12757-12760.	4.1	20
26	The possibility of forming a sacrificial anode coating for Mg. Corrosion Science, 2014, 87, 11-14.	6.6	35
27	Pushing the Theoretical Limit of Li-CF _{<i>x</i>} Batteries: A Tale of Bifunctional Electrolyte. Journal of the American Chemical Society, 2014, 136, 6874-6877.	13.7	70
28	Ordered Macroporous CdS-sensitized N-doped TiO 2 Inverse Opals Films with Enhanced Photoelectrochemical Performance. Electrochimica Acta, 2014, 146, 378-385.	5.2	15
29	Porous Fe3O4/Cul/PANI nanosheets with excellent microwave absorption and hydrophobic property. Materials Research Bulletin, 2014, 53, 58-64.	5.2	30
30	Artificial Solid Electrolyte Interphase To Address the Electrochemical Degradation of Silicon Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 10083-10088.	8.0	141
31	One-pot synthesis of novel Fe3O4/Cu2O/PANI nanocomposites as absorbents in water treatment. Journal of Materials Chemistry A, 2014, 2, 7953.	10.3	51
32	A high-conduction Ge substituted Li ₃ AsS ₄ solid electrolyte with exceptional low activation energy. Journal of Materials Chemistry A, 2014, 2, 10396-10403.	10.3	67
33	An Artificial Solid Electrolyte Interphase Enables the Use of a LiNi _{0.5} Mn _{1.5} O ₄ 5 V Cathode with Conventional Electrolytes. Advanced Energy Materials, 2013, 3, 1275-1278.	19.5	75
34	Atomic Layered Coating Enabling Ultrafast Surface Kinetics at Silicon Electrodes in Lithium Ion Batteries. Journal of Physical Chemistry Letters, 2013, 4, 3387-3391.	4.6	84
35	Electrochemical Study of Functionalized Carbon Nano-Onions for High-Performance Supercapacitor Electrodes. Journal of Physical Chemistry C, 2012, 116, 15068-15075.	3.1	105
36	Potentiostatic Intermittent Titration Technique for Electrodes Governed by Diffusion and Interfacial Reaction. Journal of Physical Chemistry C, 2012, 116, 1472-1478.	3.1	119

Juchuan Li

#	Article	IF	CITATIONS
37	Aligned TiO2 Nanotube Arrays As Durable Lithium-Ion Battery Negative Electrodes. Journal of Physical Chemistry C, 2012, 116, 18669-18677.	3.1	111
38	Potentiostatic intermittent titration technique (PITT) for spherical particles with finite interfacial kinetics. Electrochimica Acta, 2012, 75, 56-61.	5.2	53
39	Liquid Metal Alloys as Self-Healing Negative Electrodes for Lithium Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A845.	2.9	144
40	Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes. Journal of the Electrochemical Society, 2011, 158, A689.	2.9	242
41	Whisker formation on a thin film tin lithium-ion battery anode. Journal of Power Sources, 2011, 196, 1474-1477.	7.8	25
42	The search for high cycle life, high capacity, self healing negative electrodes for lithium ion batteries and a potential solution based on lithiated gallium. Materials Research Society Symposia Proceedings, 2011, 1333, 50401.	0.1	5