Nejat Duzgunes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554799/publications.pdf Version: 2024-02-01

NEINT DUZCHNES

#	Article	IF	CITATIONS
1	Gene delivery by lipoplexes and polyplexes. European Journal of Pharmaceutical Sciences, 2010, 40, 159-170.	4.0	542
2	On the formulation of pH-sensitive liposomes with long circulation times. Advanced Drug Delivery Reviews, 2004, 56, 947-965.	13.7	440
3	Cationic lipid–DNA complexes in gene delivery: from biophysics to biological applications. Advanced Drug Delivery Reviews, 2001, 47, 277-294.	13.7	346
4	Expression of Recombinant Proteins in Pichia Pastoris. Applied Biochemistry and Biotechnology, 2007, 142, 105-124.	2.9	238
5	Cationic liposomes for gene delivery. Expert Opinion on Drug Delivery, 2005, 2, 237-254.	5.0	234
6	Mechanisms and kinetics of liposome–cell interactions. Advanced Drug Delivery Reviews, 1999, 40, 3-18.	13.7	213
7	Sterically Stabilized pH-sensitive Liposomes, INTRACELLULAR DELIVERY OF AQUEOUS CONTENTS AND PROLONGED CIRCULATION IN VIVO. Journal of Biological Chemistry, 1997, 272, 2382-2388.	3.4	208
8	Current status of liposomal porphyrinoid photosensitizers. Drug Discovery Today, 2013, 18, 776-784.	6.4	88
9	Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against Mycobacterium avium complex infection in human macrophages. International Journal of Pharmaceutics, 2003, 250, 403-414.	5.2	76
10	Cationic Liposomes for Gene Delivery: Novel Cationic Lipids and Enhancement by Proteins and Peptides. Current Medicinal Chemistry, 2003, 10, 1213-1220.	2.4	75
11	Efficacy of liposomal budesonide in experimental asthma. Journal of Allergy and Clinical Immunology, 2003, 111, 321-327.	2.9	74
12	Human immunodeficiency virus type-1 (HIV-1) infection increases the sensitivity of macrophages and THP-1 cells to cytotoxicity by cationic liposomes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1312, 186-196.	4.1	72
13	A common mechanism for influenza virus fusion activity and inactivation. Biochemistry, 1993, 32, 2771-2779.	2.5	70
14	Serum-resistant lipopolyplexes for gene delivery to liver tumour cells. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 58-66.	4.3	70
15	Membrane destabilization by N-terminal peptides of viral envelope proteins. Journal of Membrane Biology, 1992, 128, 71-80.	2.1	64
16	Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N -methyl morpholiniumethoxy substituents in non-peripheral positions. Journal of Inorganic Biochemistry, 2017, 172, 67-79.	3.5	60
17	Preparation and Quantitation of Small Unilamellar Liposomes and Large Unilamellar Reverse-Phase Evaporation Liposomes. Methods in Enzymology, 2003, 367, 23-27.	1.0	58
18	Liposome-Encapsulated Antibiotics. Methods in Enzymology, 2005, 391, 261-291.	1.0	54

#	Article	IF	CITATIONS
19	Risk factors for periodontitis in HIV+ patients. Journal of Periodontal Research, 2004, 39, 149-157.	2.7	43
20	Phthalocyanines functionalized with 2-methyl-5-nitro-1H-imidazolylethoxy and 1,4,7-trioxanonyl moieties and the effect of metronidazole substitution on photocytotoxicity. Journal of Inorganic Biochemistry, 2013, 127, 62-72.	3.5	42
21	Membrane action of synthetic N-terminal peptides of influenza virus hemagglutinin and its mutants. FEBS Letters, 1988, 227, 110-114.	2.8	39
22	Diazepinoporphyrazines Containing Peripheral Styryl Substituents and Their Promising Nanomolar Photodynamic Activity against Oral Cancer Cells in Liposomal Formulations. ChemMedChem, 2014, 9, 1775-1782.	3.2	38
23	Delivery of therapeutic nucleic acids via transferrin and transferrin receptors: lipoplexes and other carriers. Expert Opinion on Drug Delivery, 2013, 10, 1583-1591.	5.0	37
24	Porphyromonas gingivalis stimulates IL-6 and IL-8 secretion in GMSM-K, HSC-3 and H413 oral epithelial cells. Anaerobe, 2014, 28, 62-67.	2.1	37
25	Bacteriophage Therapy of Bacterial Infections: The Rediscovered Frontier. Pharmaceuticals, 2021, 14, 34.	3.8	36
26	Dendrimeric Sulfanyl Porphyrazines: Synthesis, Physicoâ€Chemical Characterization, and Biological Activity for Potential Applications in Photodynamic Therapy. ChemPlusChem, 2016, 81, 460-470.	2.8	34
27	Photodynamic therapy of cancer with liposomal photosensitizers. Therapeutic Delivery, 2018, 9, 823-832.	2.2	34
28	Inhibition of human immunodeficiency virus type-1 replication in macrophages and H9 cells by free or liposome-encapsulated L-689,502, an inhibitor of the viral protease. Antiviral Research, 1997, 34, 1-15.	4.1	32
29	Susceptibility of Candida biofilms to histatin 5 and fluconazole. Antonie Van Leeuwenhoek, 2010, 97, 413-417.	1.7	32
30	Targeting of Liposomes to HIV-1-Infected Cells by Peptides Derived from the CD4 Receptor. Biochemical and Biophysical Research Communications, 1996, 227, 827-833.	2.1	30
31	Efficacy of clofazimine–modified cyclodextrin against Mycobacterium avium complex in human macrophages. International Journal of Pharmaceutics, 2003, 260, 105-114.	5.2	30
32	Liposome targeting to human immunodeficiency virus type 1-infected cells via recombinant soluble CD4 and CD4 immunoadhesin (CD4-IgG). Biochimica Et Biophysica Acta - Biomembranes, 1994, 1194, 185-196.	2.6	29
33	Efficient gene delivery by EGF-lipoplexes <i>in vitro</i> and <i>in vivo</i> . Nanomedicine, 2011, 6, 89-98.	3.3	27
34	Sulfanyl porphyrazines: Molecular barrel-like self-assembly in crystals, optical properties and inÂvitro photodynamic activity towards cancer cells. Dyes and Pigments, 2017, 136, 898-908.	3.7	27
35	Correlation between the levels of survivin and survivin promoter-driven gene expression in cancer and non-cancer cells. Cellular and Molecular Biology Letters, 2009, 14, 70-89.	7.0	25
36	The Use of Sterically Stabilized Liposomes to Treat Asthma. Methods in Enzymology, 2005, 391, 413-427.	1.0	24

#	Article	IF	CITATIONS
37	Expression and characterization of recombinant human secretory leukocyte protease inhibitor (SLPI) protein from Pichia pastoris. Protein Expression and Purification, 2009, 67, 175-181.	1.3	23
38	Liposomal formulations of magnesium sulfanyl tribenzoporphyrazines for the photodynamic therapy of cancer. Journal of Inorganic Biochemistry, 2018, 184, 34-41.	3.5	23
39	Antitumoral activity of transferrin-lipoplexes carrying the IL-12 gene in the treatment of colon cancer. Journal of Drug Targeting, 2006, 14, 527-535.	4.4	22
40	Origins of Suicide Gene Therapy. Methods in Molecular Biology, 2019, 1895, 1-9.	0.9	22
41	Cationic liposome-mediated expression of HIV-regulated luciferase and diphtheria toxin a genes in HeLa cells infected with or expressing HIV. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1356, 185-197.	4.1	21
42	Introduction: The Origins of Liposomes: Alec Bangham at Babraham. Methods in Enzymology, 2005, , 1-3.	1.0	21
43	Physicochemical properties of liposome-incorporated 2-(morpholin-4-yl)ethoxy phthalocyanines and their photodynamic activity against oral cancer cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 445-457.	3.9	21
44	Sterically Stabilized pH-Sensitive Liposomes. Methods in Enzymology, 2004, 387, 134-147.	1.0	19
45	Serum decreases the size of Metafectene-and Genejammer-DNA complexes but does not affect significantly their transfection activity in SCCVII murine squamous cell carcinoma cells. Cellular and Molecular Biology Letters, 2006, 11, 171-90.	7.0	19
46	Methods to Monitor Liposome Fusion, Permeability, and Interaction with Cells. Methods in Molecular Biology, 2010, 606, 209-232.	0.9	19
47	Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro. Medical Science Monitor Basic Research, 2016, 22, 156-164.	2.6	19
48	Delivery of Antiviral Agents in Liposomes. Methods in Enzymology, 2005, 391, 351-373.	1.0	18
49	Longitudinal evaluation of prostaglandin E2 (PGE2) and periodontal status in HIV+ patients. Archives of Oral Biology, 2007, 52, 1102-1108.	1.8	15
50	Lipopolyplexes as Nanomedicines for Therapeutic Gene Delivery. Methods in Enzymology, 2012, 509, 327-338.	1.0	15
51	Inhibition of HIV-1 Env-Mediated Cell-Cell Fusion by Lectins, Peptide T-20, and Neutralizing Antibodies. The Open Virology Journal, 2011, 5, 44-51.	1.8	15
52	Chapter 14 Targeted Lipoplexes for siRNA Delivery. Methods in Enzymology, 2009, 465, 267-287.	1.0	14
53	Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design. Pathogens, 2021, 10, 1599.	2.8	14
54	Gene delivery to carcinoma cells via novel non-viral vectors: Nanoparticle tracking analysis and suicide gene therapy. European Journal of Pharmaceutical Sciences, 2014, 60, 72-79.	4.0	12

#	Article	IF	CITATIONS
55	Liposomes and lipopolymeric carriers for gene delivery. Journal of Microencapsulation, 2010, 27, 602-608.	2.8	11
56	Genetic Nanomedicine. Methods in Enzymology, 2012, 509, 355-367.	1.0	11
57	S-seco-porphyrazine as a new member of the seco-porphyrazine family – Synthesis, characterization and photocytotoxicity against cancer cells. Bioorganic Chemistry, 2020, 96, 103634.	4.1	11
58	Cell-Penetrating Peptide-Based Systems for Nucleic Acid Delivery. Methods in Enzymology, 2012, 509, 277-300.	1.0	9
59	Gene Delivery by Cationic Liposome–DNA Complexes Containing Transferrin or Serum Albumin. Methods in Enzymology, 2003, 373, 369-383.	1.0	8
60	Dynorphinâ€phospholipid membrane interactions: Role of phospholipid headâ€group and cholesterol. International Journal of Peptide and Protein Research, 1996, 47, 84-90.	0.1	8
61	Editorial [Hot Topic: Physico-chemical Approach to Targeting Phenomena (Guest Editors: Sadao Hirota) Tj ETQq	1 1 0,7843 1.2	314 _. rgBT /Ov
62	Porphyromonas gingivalis stimulates IL-18 secretion in human monocytic THP-1 cells. Microbes and Infection, 2012, 14, 684-689.	1.9	6
63	Eradication of Human Immunodeficiency Virus Type-1 (HIV-1)-Infected Cells. Pharmaceutics, 2019, 11, 255.	4.5	6
64	Nonâ€viral suicide gene therapy in cervical, oral and pharyngeal carcinoma cells with CMV―and EEVâ€plasmids. Journal of Gene Medicine, 2018, 20, e3054.	2.8	5
65	Suicide Gene Therapy for Oral Squamous Cell Carcinoma. Methods in Molecular Biology, 2019, 1895, 43-55.	0.9	5
66	Biophysical Characterization of Cationic Liposome–DNA Complexes and their Interaction with Cells. Methods in Enzymology, 2003, 373, 298-312.	1.0	4
67	Comparison of the shape parameters of DNA–cationic lipid complexes and model polyelectrolyte–lipid complexes. Journal of Colloid and Interface Science, 2004, 276, 317-322.	9.4	4
68	A nonviral vector with transfection activity comparable with adenoviral transduction. Therapeutic Delivery, 2016, 7, 739-749.	2.2	4
69	Suicide Gene Therapy of Oral Squamous Cell Carcinoma and Cervical Carcinoma In Vitro. Methods in Molecular Biology, 2019, 1895, 177-184.	0.9	4
70	Photocytotoxicity of liposomal zinc phthalocyanine in oral squamous cell carcinoma and pharyngeal carcinoma cells. Therapeutic Delivery, 2020, 11, 547-556.	2.2	4
71	Gene therapy for oral cancer: efficient delivery of a 'suicide gene' to murine oral cancer cells in physiological milieu. Journal of the California Dental Association, 2005, 33, 967-71.	0.1	4
70	Drefees Methods in Enzymalogy 2012 E08 viv wi	1.0	

72 Preface. Methods in Enzymology, 2012, 508, xix-xxi.

1.0 3

#	Article	IF	CITATIONS
73	pH-Sensitive Liposomes. , 2019, , 713-730.		3
74	Peptide Inhibitors of Viral Membrane Fusion. Medical Research Archives, 2020, 8, .	0.2	3
75	Fusion of Liposomes Induced and Modulated by Proteins and Polypeptides. , 2019, , 195-208.		2
76	Fluorescence Assays For Membrane Fusion. , 2018, , 117-160.		2
77	ProLungâ, ¢-budesonide Inhibits SARS-CoV-2 Replication and Reduces Lung Inflammation. , 2021, 3, 52-65.		2
78	Fluorescence Methods for Evaluating Lipoplex-Mediated Gene Delivery. Methods in Molecular Biology, 2010, 606, 425-437.	0.9	2
79	Preface. Methods in Enzymology, 2012, 509, xxi-xxiii.	1.0	1
80	A gene therapy approach to eliminate HIV-1-infected cells. Journal of the California Dental Association, 2012, 40, 402-6.	0.1	1
81	Preface. Methods in Enzymology, 2009, 465, xix.	1.0	0
82	HIV-1 Env-Mediated Membrane Fusion Monitored by Fluorescence Microscopy of Syncytium Formation Between Clone69T1RevEnv and SupT1 Cells. Biophysical Journal, 2010, 98, 670a.	0.5	0
83	Gene Delivery to Cancer Cells with Metafectene and Its Derivatives: Nanoparticle Tracking Analysis of Lipoplexes. Biophysical Journal, 2014, 106, 625a.	0.5	0
84	170. TransfeX and TransIT-LT1 Mediated Gene Delivery to Cervical and Oral Squamous Cell Carcinoma Cells. Molecular Therapy, 2015, 23, S68.	8.2	0
85	680. TransfeX-Mediated HSV-tk/Ganciclovir Suicide Gene Therapy in HeLa Cervical Carcinoma and HSC-3, FaDu, and H357 Oral Cancer Cells. Molecular Therapy, 2016, 24, S268-S269.	8.2	0
86	Broadly Neutralizing Anti-HIV-1 Antibodies Do Not Inhibit HIV-1-ENV-Mediated Cell-Cell Fusion. Biophysical Journal, 2018, 114, 603a-604a.	0.5	0
87	Viscometric Analysis of DNA-Lipid Complexes. Methods in Molecular Biology, 2010, 606, 369-383.	0.9	Ο