Guojian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5547851/publications.pdf

Version: 2024-02-01

361296 345118 1,320 43 20 36 citations h-index g-index papers 43 43 43 1337 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Research on highly flame-retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants. Polymer Degradation and Stability, 2015, 111, 142-150.	2.7	109
2	Carbon Nanotube Fiber Based Stretchable Conductor. Advanced Functional Materials, 2013, 23, 789-793.	7.8	104
3	Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam. Polymer Degradation and Stability, 2014, 101, 32-39.	2.7	88
4	Influences of binder on fire protection and anticorrosion properties of intumescent fire resistive coating for steel structure. Surface and Coatings Technology, 2010, 204, 1186-1192.	2.2	83
5	Influences of glass flakes on fire protection and water resistance of waterborne intumescent fire resistive coating for steel structure. Progress in Organic Coatings, 2011, 70, 150-156.	1.9	73
6	Influences of montmorillonite on fire protection, water and corrosion resistance of waterborne intumescent fire retardant coating for steel structure. Surface and Coatings Technology, 2014, 239, 177-184.	2.2	70
7	The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating. Applied Surface Science, 2016, 385, 453-463.	3.1	66
8	Study on the surface energies and dispersibility of graphene oxide and its derivatives. Journal of Materials Science, 2015, 50, 3895-3907.	1.7	55
9	The novel epoxy/PEPA phosphate flame retardants: Synthesis, characterization and application in transparent intumescent fire resistant coatings. Progress in Organic Coatings, 2016, 97, 1-9.	1.9	55
10	Synthesis of a novel phosphorus-containing polymer and its application in amino intumescent fire resistant coating. Progress in Organic Coatings, 2013, 76, 188-193.	1.9	51
11	Thermal degradation study of fire resistive coating containing melamine polyphosphate and dipentaerythritol. Progress in Organic Coatings, 2011, 72, 605-611.	1.9	50
12	Preparation and properties of graphene oxide/polyimide composites by in situ polymerization and thermal imidization process. High Performance Polymers, 2017, 29, 187-196.	0.8	40
13	Study on the preparation and properties of novel transparent fire-resistive coatings. Journal of Coatings Technology Research, 2013, 10, 717-726.	1.2	32
14	Influences of expandable graphite modified by polyethylene glycol on fire protection of waterborne intumescent fire resistive coating. Surface and Coatings Technology, 2010, 204, 3599-3605.	2.2	29
15	A Scalable Distributed Architecture for Intelligent Vision System. IEEE Transactions on Industrial Informatics, 2012, 8, 91-99.	7.2	29
16	Influence of thermal behavior of phosphorus compounds on their flame retardant effect in PU rigid foam. Fire and Materials, 2016, 40, 826-835.	0.9	27
17	Influences of polymerization degree of ammonium polyphosphate on fire protection of waterborne intumescent fire resistive coating. Surface and Coatings Technology, 2012, 206, 2275-2280.	2.2	25
18	Influence of nano-boron nitride on anti-aging property of waterborne fire-resistive coatings. Journal of Coatings Technology Research, 2014, 11, 805-815.	1.2	24

#	Article	IF	Citations
19	Investigation of the effect of foaming process parameters on expanded thermoplastic polyurethane bead foams properties using response surface methodology. Journal of Applied Polymer Science, 2018, 135, 46327.	1.3	23
20	An intumescent flame retardant containing caged bicyclic phosphate and oligomer: Synthesis, thermal properties and application in intumescent fire resistant coating. Progress in Organic Coatings, 2016, 90, 83-90.	1.9	21
21	Preparation of transparent ultrahydrophobic silica film by sol–gel process. Journal of Coatings Technology Research, 2011, 8, 53-60.	1.2	20
22	Influence of degree of polymerization of ammonium polyphosphate on anti-aging property of waterborne fire resistive coatings. Surface and Coatings Technology, 2014, 246, 71-76.	2.2	19
23	Influence of nano-boron nitride on fire protection of waterborne fire-resistive coatings. Journal of Coatings Technology Research, 2014, 11, 265-272.	1.2	19
24	Mechanism of smoke suppression by melamine in rigid polyurethane foam. Fire and Materials, 2015, 39, 271-282.	0.9	18
25	Application of the long-chain linear polyester in plastification of PVC. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 100-104.	0.4	17
26	Selfâ€Assembly of Carbon Nanotubes Modified by Amphiphilic Block Polymers in Selective Solvent. Macromolecular Chemistry and Physics, 2009, 210, 2070-2077.	1.1	16
27	Influences of silicone emulsion on fire protection of waterborne intumescent fire-resistive coating. Journal of Coatings Technology Research, 2014, 11, 231-237.	1.2	15
28	Preparation and characterization of amphiphilic multi-walled carbon nanotubes. Journal of Nanoparticle Research, 2008, 10, 659-663.	0.8	14
29	Influence of PEPA-containing polyether structure on fire protection of transparent fire-resistant coatings. Journal of Coatings Technology Research, 2016, 13, 457-468.	1.2	14
30	Influence of molecular weight of PEG on thermal and fire protection properties of PEPA-containing polyether flame retardants with high water solubility. Progress in Organic Coatings, 2016, 90, 390-398.	1.9	14
31	Preparation of functional reduced graphene oxide and its influence on the properties of polyimide composites. Journal of Applied Polymer Science, 2017, 134, 45119.	1.3	14
32	Synthesis and characterization of poly(etherâ€blockâ€amide) and application as permanent antistatic agent. Journal of Applied Polymer Science, 2010, 118, 2448-2453.	1.3	13
33	Influence of caged bicyclic phosphate and CaCO3 nanoparticles onÂchar-forming property of PU rigid foams. Polymer Degradation and Stability, 2013, 98, 2323-2330.	2.7	13
34	Interfacial morphology and friction properties of thin PEO and PEO/PAA blend films. Applied Surface Science, 2011, 257, 1952-1959.	3.1	10
35	Influence of structure of amines on the properties of aminesâ€modified reduced graphene oxide/polyimide composites. Journal of Applied Polymer Science, 2016, 133, .	1.3	10
36	Synthesis of polyhydric alcohol/ethanol phosphate flame retardant and its application in PU rigid foams. Journal of Applied Polymer Science, 2015, 132, .	1.3	8

#	Article	lF	CITATIONS
37	Self-assembly behavior of carbon nanotubes modified by amphiphilic block copolymer. Colloid and Polymer Science, 2010, 288, 1677-1685.	1.0	7
38	The Preparation and Performance of Phenolic Foams Modified by Active Polypropylene Glycol. Frontiers in Forests and Global Change, 2013, 32, 155-172.	0.6	7
39	Preparation of a functional reduced graphene oxide and carbon nanotube hybrid and its reinforcement effects on the properties of polyimide composites. Journal of Applied Polymer Science, 2017, 134, .	1.3	7
40	Preparation of open cell rigid polyurethane foams and modified with organo-kaolin. Journal of Cellular Plastics, 2020, 56, 435-447.	1.2	7
41	Influence of hydrothermal aging process on components and properties of waterborne fire-resistive coatings. Journal of Coatings Technology Research, 2014, 11, 207-216.	1.2	3
42	Flexible Composites: Carbon Nanotube Fiber Based Stretchable Conductor (Adv. Funct. Mater. 7/2013). Advanced Functional Materials, 2013, 23, 916-916.	7.8	1
43	Analysis of the genotype–phenotype correlation of MYO15A variants in Chinese non-syndromic hearing loss patients. BMC Medical Genomics, 2022, 15, 71.	0.7	0