
Javier HernÃ;ndez Ferrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5547678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functionalized carbon dots on TiO2 for perovskite photovoltaics and stable photoanodes for water splitting. International Journal of Hydrogen Energy, 2021, 46, 12180-12191.	7.1	15
2	Optical properties and carrier dynamics in Co-doped ZnO nanorods. Nanoscale Advances, 2021, 3, 214-222.	4.6	3
3	Hybrids of Reduced Graphene Oxide Aerogel and CNT for Electrochemical O2 Reduction. Catalysts, 2021, 11, 1404.	3.5	3
4	Controlling the surface chemistry of graphene oxide: Key towards efficient ZnO-GO photocatalysts. Catalysis Today, 2020, 357, 350-360.	4.4	50
5	Towards high-efficient microsupercapacitors based on reduced graphene oxide with optimized reduction degree. Energy Storage Materials, 2020, 25, 740-749.	18.0	18
6	Differential properties and effects of fluorescent carbon nanoparticles towards intestinal theranostics. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110612.	5.0	5
7	Inâ€Situ Growth and Immobilization of CdS Nanoparticles onto Functionalized MoS ₂ : Preparation, Characterization and Fabrication of Photoelectrochemical Cells. Chemistry - an Asian Journal, 2020, 15, 2350-2356.	3.3	4
8	Cobalt-Doped ZnO Nanorods Coated with Nanoscale Metal–Organic Framework Shells for Water-Splitting Photoanodes. ACS Applied Nano Materials, 2020, 3, 7781-7788.	5.0	29
9	Carbon Nanotube Film Electrodes with Acrylic Additives: Blocking Electrochemical Charge Transfer Reactions. Nanomaterials, 2020, 10, 1078.	4.1	8
10	Bottomâ€Up Synthesized MoS 2 Interfacing Polymer Carbon Nanodots with Electrocatalytic Activity for Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 6635-6642.	3.3	12
11	A tool box to ascertain the nature of doping and photoresponse in single-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2019, 21, 4063-4071.	2.8	9
12	Integrating Water-Soluble Polythiophene with Transition-Metal Dichalcogenides for Managing Photoinduced Processes. ACS Applied Materials & Interfaces, 2019, 11, 5947-5956.	8.0	11
13	Capacitive and Charge Transfer Effects of Singleâ€Walled Carbon Nanotubes in TiO ₂ Electrodes. ChemPhysChem, 2019, 20, 838-847.	2.1	5
14	Photoactivity improvement of TiO2 electrodes by thin hole transport layers of reduced graphene oxide. Electrochimica Acta, 2019, 298, 279-287.	5.2	10
15	Conjugated Polymer Nanoparticle–Graphene Oxide Chargeâ€Transfer Complexes. Advanced Functional Materials, 2018, 28, 1707548.	14.9	26
16	Quantification of Signal-to-Noise Ratio in Cerebral Cortex Recordings Using Flexible MEAs With Co-localized Platinum Black, Carbon Nanotubes, and Gold Electrodes. Frontiers in Neuroscience, 2018, 12, 862.	2.8	28
17	Carbon Nanofoam Supercapacitor Electrodes with Enhanced Performance Using a Water-Transfer Process. ACS Omega, 2018, 3, 15134-15139.	3.5	3
18	Charge-transfer characteristics in carbon nanostructure/metal oxide photoelectrodes efficiently probed by hydrogen peroxide. Journal of Electroanalytical Chemistry, 2018, 828, 86-90.	3.8	3

#	Article	IF	CITATIONS
19	Cysteine functionalized bio-nanomaterial for the affinity sensing of Pb(II) as an indicator of environmental damage. Microchemical Journal, 2018, 141, 271-278.	4.5	24
20	Single-walled carbon nanotubes covalently functionalized with cysteine: A new alternative for the highly sensitive and selective Cd(II) quantification. Sensors and Actuators B: Chemical, 2017, 249, 506-514.	7.8	35
21	Electron Trap States and Photopotential of Nanocrystalline Titanium Dioxide Electrodes Filled with Singleâ€Walled Carbon Nanotubes. ChemElectroChem, 2017, 4, 2300-2307.	3.4	6
22	Self-Assembled Core–Shell CdTe/Poly(3-hexylthiophene) Nanoensembles as Novel Donor–Acceptor Light-Harvesting Systems. ACS Applied Materials & Interfaces, 2017, 9, 44695-44703.	8.0	8
23	Electrochemical sensing of guanine, adenine and 8-hydroxy-2′-deoxyguanosine at glassy carbon modified with single-walled carbon nanotubes covalently functionalized with lysine. RSC Advances, 2016, 6, 13469-13477.	3.6	29
24	Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols. Analytica Chimica Acta, 2016, 909, 51-59.	5.4	33
25	Electrochemical Sensor for the Quantification of Dopamine Using Glassy Carbon Electrodes Modified with Singleâ€Wall Carbon Nanotubes Covalently Functionalized with Polylysine. Electroanalysis, 2015, 27, 1565-1571.	2.9	13
26	Graphene oxide nanoribbon-based sensors for the simultaneous bio-electrochemical enantiomeric resolution and analysis of amino acid biomarkers. Biosensors and Bioelectronics, 2015, 68, 163-167.	10.1	55
27	Graphene nanoribbon-based electrochemical sensors on screen-printed platforms. Electrochimica Acta, 2015, 172, 2-6.	5.2	42
28	Peptide-based biomaterials. Linking l-tyrosine and poly l-tyrosine to graphene oxide nanoribbons. Journal of Materials Chemistry B, 2015, 3, 3870-3884.	5.8	24
29	Transparent conducting films made of different carbon nanotubes, processed carbon nanotubes, and graphene nanoribbons. Chemical Engineering Science, 2015, 138, 566-574.	3.8	13
30	Study of neuron survival on polypyrrole-embedded single-walled carbon nanotube substrates for long-term growth conditions. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	4.0	11
31	Controlled chemistry of tailored graphene nanoribbons for electrochemistry: a rational approach to optimizing molecule detection. RSC Advances, 2014, 4, 132-139.	3.6	73
32	Singleâ€Wall Carbon Nanotubes Covalently Functionalized with Polylysine: Synthesis, Characterization and Analytical Applications for the Development of Electrochemical (Bio)Sensors. Electroanalysis, 2014, 26, 1676-1683.	2.9	14
33	Multi-walled carbon nanotubes/graphene nanoribbons hybrid materials with superior electrochemical performance. Electrochemistry Communications, 2014, 39, 26-29.	4.7	23
34	The effect of gamma-irradiation on few-layered graphene materials. Applied Surface Science, 2014, 301, 264-272.	6.1	104
35	Water dissociation on well-defined platinum surfaces: The electrochemical perspective. Catalysis Today, 2013, 202, 105-113.	4.4	201
36	Electrochemical synthesis and characterization of single-walled carbon nanotubes/polypyrrole films on transparent substrates. Electrochimica Acta, 2012, 64, 1-9.	5.2	22

#	Article	IF	CITATIONS
37	Effects of the surface mobility on the oxidation of adsorbed CO on platinum electrodes in alkaline media. The role of the adlayer and surface defects. Physical Chemistry Chemical Physics, 2011, 13, 16762.	2.8	34
38	<i>In Situ</i> Surface Characterization and Oxygen Reduction Reaction on Shape-Controlled Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 2256-2273.	0.9	65
39	Electrochemistry of Shape-Controlled Catalysts:  Oxygen Reduction Reaction on Cubic Gold Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 14078-14083.	3.1	145
40	Methanol oxidation on gold nanoparticles in alkaline media: Unusual electrocatalytic activity. Electrochimica Acta, 2006, 52, 1662-1669.	5.2	128
41	Characterization of the Surface Structure of Gold Nanoparticles and Nanorods Using Structure Sensitive Reactions. Journal of Physical Chemistry B, 2005, 109, 12651-12654.	2.6	85
42	Gold nanoparticles synthesized in a water-in-oil microemulsion: electrochemical characterization and effect of the surface structure on the oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2004, 574, 185-196.	3.8	156
43	The role of anions in oxygen reduction in neutral and basic media on gold single-crystal electrodes. Journal of Solid State Electrochemistry, 2003, 7, 599-606.	2.5	56
44	Carbon Nanotubes as Suitable Interface for Improving Neural Recordings. , 0, , .		2