Carlos Gamazo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5547568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oral Immunogenicity of Enterotoxigenic Escherichia coli Outer Membrane Vesicles Encapsulated into Zein Nanoparticles Coated with a Gantrez® AN–Mannosamine Polymer Conjugate. Pharmaceutics, 2022, 14, 123.	2.0	4
2	Immune Response after Skin Delivery of a Recombinant Heat-Labile Enterotoxin B Subunit of Enterotoxigenic Escherichia coli in Mice. Pharmaceutics, 2022, 14, 239.	2.0	5
3	Development of a Bacterial Nanoparticle Vaccine Against Escherichia coli. Methods in Molecular Biology, 2022, 2410, 357-365.	0.4	2
4	Protection Conferred by Drinking Water Administration of a Nanoparticle-Based Vaccine against Salmonella Enteritidis in Hens. Vaccines, 2021, 9, 216.	2.1	2
5	Experimental vaccination with nanoparticles containing Escherichia coli virulence factors. , 2021, , 3-27.		0
6	Vaccine Based on Outer Membrane Vesicles Using Hydrogels as Vaccine Delivery System. Methods in Molecular Biology, 2021, 2182, 153-160.	0.4	2
7	Oral Immunogenicity in Mice and Sows of Enterotoxigenic Escherichia Coli Outer-Membrane Vesicles Incorporated into Zein-Based Nanoparticles. Vaccines, 2020, 8, 11.	2.1	10
8	Protective Passive Immunity in Escherichia coli ETEC-Challenged Neonatal Mice Conferred by Orally Immunized Dams with Nanoparticles Containing Homologous Outer Membrane Vesicles. Vaccines, 2020, 8, 286.	2.1	8
9	Intranasal delivery system of bacterial antigen using thermosensitive hydrogels based on a Pluronic-Gantrez conjugate. International Journal of Pharmaceutics, 2020, 579, 119154.	2.6	18
10	Dissolving Microneedles for Intradermal Vaccination against Shigellosis. Vaccines, 2019, 7, 159.	2.1	14
11	Understanding the basis of transcutaneous vaccine delivery. Therapeutic Delivery, 2019, 10, 63-80.	1.2	15
12	Mannosylated Nanoparticles for Oral Immunotherapy in a Murine Model of Peanut Allergy. Journal of Pharmaceutical Sciences, 2019, 108, 2421-2429.	1.6	17
13	Poly(anhydride) nanoparticles containing cashew nut proteins can induce a strong Th1 and Treg immune response after oral administration. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 51-60.	2.0	16
14	New pharmaceutical approaches for the treatment of food allergies. Expert Opinion on Drug Delivery, 2018, 15, 675-686.	2.4	6
15	Evaluation of nanoparticles as oral vehicles for immunotherapy against experimental peanut allergy. International Journal of Biological Macromolecules, 2018, 110, 328-335.	3.6	26
16	Towards a subunit vaccine from a Shigella flexneri ΔtolR mutant. Vaccine, 2018, 36, 7509-7519.	1.7	14
17	Topical immunization using a nanoemulsion containing bacterial membrane antigens. Journal of Drug Delivery Science and Technology, 2017, 42, 207-214.	1.4	9
18	Chitosan/sulfated locust bean gum nanoparticles: In vitro and in vivo evaluation towards an application in oral immunization. International Journal of Biological Macromolecules, 2017, 96, 786-797.	3.6	37

#	Article	IF	CITATIONS
19	Adjuvants for allergy immunotherapeutics. Human Vaccines and Immunotherapeutics, 2017, 13, 2416-2427.	1.4	19
20	Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 103-110.	1.7	106
21	Oral immunotherapy using polymeric nanoparticles loaded with peanut proteins in a murine model of fatal anaphylaxis. Immunotherapy, 2017, 9, 1205-1217.	1.0	14
22	Maternal Vaccination. Immunization of Sows during Pregnancy against ETEC Infections. Vaccines, 2017, 5, 48.	2.1	22
23	Improved effect of amikacin-loaded poly(D,L-lactide-co-glycolide) nanoparticles against planktonic and biofilm cells of Pseudomonas aeruginosa. Journal of Medical Microbiology, 2017, 66, 137-148.	0.7	22
24	Effective protection of mice against Shigella flexneri with a new self-adjuvant multicomponent vaccine. Journal of Medical Microbiology, 2017, 66, 946-958.	0.7	12
25	Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa. European Journal of Pharmaceutical Sciences, 2016, 93, 392-398.	1.9	39
26	Zein-Based Nanoparticles Improve the Oral Bioavailability of Resveratrol and Its Anti-inflammatory Effects in a Mouse Model of Endotoxic Shock. Journal of Agricultural and Food Chemistry, 2015, 63, 5603-5611.	2.4	158
27	Mimicking microbial strategies for the design of mucus-permeating nanoparticles for oral immunization. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 454-463.	2.0	30
28	Interactions of poly (anhydride) nanoparticles with macrophages in light of their vaccine adjuvant properties. International Journal of Pharmaceutics, 2015, 496, 922-930.	2.6	6
29	Nucleic acid vaccination strategies against infectious diseases. Expert Opinion on Drug Delivery, 2015, 12, 1851-1865.	2.4	18
30	Development of a Bacterial Nanoparticle Vaccine. Methods in Molecular Biology, 2015, 1225, 139-149.	0.4	1
31	Nanoparticle based-immunotherapy against allergy. Immunotherapy, 2014, 6, 885-897.	1.0	37
32	Immunogenicity of Peanut Proteins Containing Poly(Anhydride) Nanoparticles. Vaccine Journal, 2014, 21, 1106-1112.	3.2	26
33	Nanoparticles as Adjuvants for Vaccination. Frontiers in Nanobiomedical Research, 2014, , 407-439.	0.1	0
34	Vaccine Delivery Systems for Veterinary Immunization. , 2014, , 379-406.		1
35	Antigen Delivery Systems as Oral Adjuvants. , 2014, , 603-622.		0
36	Towards a non-living vaccine against Shigella flexneri: From the inactivation procedure to protection studies. Methods, 2013, 60, 264-268.	1.9	16

#	Article	IF	CITATIONS
37	Recent progress towards development of a <i>Shigella</i> vaccine. Expert Review of Vaccines, 2013, 12, 43-55.	2.0	45
38	Nanoparticle-based vaccine for mucosal protection against Shigella flexneri in mice. Vaccine, 2013, 31, 3288-3294.	1.7	61
39	Hydrophobic Gentamicin-Loaded Nanoparticles Are Effective against Brucella melitensis Infection in Mice. Antimicrobial Agents and Chemotherapy, 2013, 57, 3326-3333.	1.4	44
40	Conjunctival vaccination against Brucella ovis in mice with mannosylated nanoparticles. Journal of Controlled Release, 2012, 162, 553-560.	4.8	36
41	Cellular pharmacokinetics and intracellular activity against Listeria monocytogenes and Staphylococcus aureus of chemically modified and nanoencapsulated gentamicin. Journal of Antimicrobial Chemotherapy, 2012, 67, 2158-2164.	1.3	30
42	Nanoparticulate Adjuvants and Delivery Systems for Allergen Immunotherapy. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-13.	3.0	55
43	Acellular vaccines for ovine brucellosis: a safer alternative against a worldwide disease. Expert Review of Vaccines, 2012, 11, 87-95.	2.0	15
44	Development of poly(anhydride) nanoparticles loaded with peanut proteins: The influence of preparation method on the immunogenic properties. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 241-249.	2.0	26
45	Nanostructures for Oral Vaccine Delivery. RSC Drug Discovery Series, 2012, , 91-113.	0.2	0
46	Ara H 9 Is The Main Allergen In Peanut Allergic Patients In The Mediterranean Area Regardless The Symptom Severity. Journal of Allergy and Clinical Immunology, 2011, 127, AB242-AB242.	1.5	1
47	Poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as innate immune system activators. Vaccine, 2011, 29, 7130-7135.	1.7	56
48	Mucosal immunization with Shigella flexneri outer membrane vesicles induced protection in mice. Vaccine, 2011, 29, 8222-8229.	1.7	74
49	High Loading of Gentamicin in Bioadhesive PVM/MA Nanostructured Microparticles Using Compressed Carbon-Dioxide. Pharmaceutical Research, 2011, 28, 309-321.	1.7	38
50	Novel bioactive hydrophobic gentamicin carriers for the treatment of intracellular bacterial infections. Acta Biomaterialia, 2011, 7, 1599-1608.	4.1	56
51	Nanomedicine: Novel approaches in human and veterinary therapeutics. Veterinary Parasitology, 2011, 180, 47-71.	0.7	114
52	Influence of dextran on the bioadhesive properties of poly(anhydride) nanoparticles. International Journal of Pharmaceutics, 2010, 390, 37-44.	2.6	34
53	Drug delivery systems for potential treatment of intracellular bacterial infections. Frontiers in Bioscience - Landmark, 2010, 15, 397.	3.0	73
54	Poly anhydride nanoparticles as adjuvants for mucosal vaccination. Frontiers in Bioscience - Scholar, 2010, S2, 876-890.	0.8	27

#	Article	IF	CITATIONS
55	Differences In The Immunologic Response To Peanut Allergen Depending Upon The Route, Lipid Content And Peanut Roasting In An Animal Model. Journal of Allergy and Clinical Immunology, 2010, 125, AB220.	1.5	Ο
56	Poly(Anhydride) Nanoparticles Act as Active Th1 Adjuvants through Toll-Like Receptor Exploitation. Vaccine Journal, 2010, 17, 1356-1362.	3.2	107
57	Evaluation of particulate acellular vaccines against Brucella ovis infection in rams. Vaccine, 2010, 28, 3038-3046.	1.7	28
58	A novel nanoparticulate adjuvant for immunotherapy with Lolium perenne. Journal of Immunological Methods, 2009, 348, 1-8.	0.6	36
59	Design and influence of Î ³ -irradiation on the biopharmaceutical properties of nanoparticles containing an antigenic complex from Brucella ovis. European Journal of Pharmaceutical Sciences, 2009, 37, 563-572.	1.9	17
60	Co-Delivery of Ovalbumin and CpG Motifs into Microparticles Protected Sensitized Mice from Anaphylaxis. International Archives of Allergy and Immunology, 2009, 149, 111-118.	0.9	25
61	Immunoadjuvant capacity of flagellin and mannosamine-coated poly(anhydride) nanoparticles in oral vaccination. Vaccine, 2009, 27, 4784-4790.	1.7	99
62	New adjuvants: from empiricism to science. Expert Review of Vaccines, 2009, 8, 1333-1337.	2.0	1
63	Biofilm formation by Salmonella in food processing environments. , 2009, , 226-249.		1
64	Evaluation of Bioadhesive Capacity and Immunoadjuvant Properties of Vitamin B12-Gantrez Nanoparticles. Pharmaceutical Research, 2008, 25, 2859-2868.	1.7	68
65	Stability of Poly(ε-caprolactone) Microparticles Containing Brucella ovis Antigens as a Vaccine Delivery System Against Brucellosis. AAPS PharmSciTech, 2008, 9, 1063-9.	1.5	6
66	Co-encapsulation of an antigen and CpG oligonucleotides into PLGA microparticles by TROMS technology. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 98-108.	2.0	45
67	Allergen immunotherapy with nanoparticles containing lipopolysaccharide from Brucella ovis. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 711-717.	2.0	29
68	Mannose-targeted systems for the delivery of therapeutics. Expert Opinion on Drug Delivery, 2008, 5, 703-724.	2.4	255
69	Micro-organism-like nanoparticles for oral antigen delivery. Journal of Drug Delivery Science and Technology, 2008, 18, 31-39.	1.4	9
70	Gamma Interferon Loaded onto Albumin Nanoparticles: In Vitro and In Vivo Activities against Brucella abortus. Antimicrobial Agents and Chemotherapy, 2007, 51, 1310-1314.	1.4	35
71	Poly(d , l -Lactide-Coglycolide) Particles Containing Gentamicin: Pharmacokinetics and Pharmacodynamics in Brucella melitensis - Infected Mice. Antimicrobial Agents and Chemotherapy, 2007, 51, 1185-1190.	1.4	59
72	Nanoparticles as Adjuvant-Vectors for Vaccination. Drugs and the Pharmaceutical Sciences, 2007, , 317-325.	0.1	1

#	Article	IF	CITATIONS
73	Gantrez® AN nanoparticles as an adjuvant for oral immunotherapy with allergens. Vaccine, 2007, 25, 5263-5271.	1.7	68
74	Bioadhesive capacity and immunoadjuvant properties of thiamine-coated nanoparticles. Vaccine, 2007, 25, 8123-8132.	1.7	53
75	Protective immunity of biodegradable nanoparticle-based vaccine against an experimental challenge with Salmonella Enteritidis in mice. Vaccine, 2007, 25, 4410-4419.	1.7	47
76	Biodegradable gentamicin delivery systems for parenteral use for the treatment of intracellular bacterial infections. Expert Opinion on Drug Delivery, 2007, 4, 677-688.	2.4	24
77	Intradermal immunization with ovalbumin-loaded poly-?-caprolactone microparticles conferred protection in ovalbumin-sensitized allergic mice. Clinical and Experimental Allergy, 2007, 37, 287-295.	1.4	18
78	Optimization of the entrapment of bacterial cell envelope extracts into microparticles for vaccine delivery. Journal of Microencapsulation, 2006, 23, 169-181.	1.2	10
79	Determination of gentamicin in different matrices by a new sensitive high-performance liquid chromatography-mass spectrometric method. Journal of Antimicrobial Chemotherapy, 2006, 58, 557-563.	1.3	47
80	Biodegradable micro- and nanoparticles as long-term delivery vehicles for gentamicin. Journal of Microencapsulation, 2006, 23, 782-792.	1.2	43
81	Brucella outer membrane complex-loaded microparticles as a vaccine against Brucella ovis in rams. Vaccine, 2006, 24, 1897-1905.	1.7	38
82	Experiments on a sub-unit vaccine encapsulated in microparticles and its efficacy against Brucella melitensis in mice. Vaccine, 2006, 24, 4179-4187.	1.7	24
83	Development of a Novel Vaccine Delivery System Based on Gantrez Nanoparticles. Journal of Nanoscience and Nanotechnology, 2006, 6, 3283-3289.	0.9	43
84	Encapsulation of antigenic extracts of Salmonella enterica serovar. Veterinary Microbiology, 2006, 118, 124-132.	0.8	32
85	Nanocarriers with Gentamicin to Treat Intracellular Pathogens. Journal of Nanoscience and Nanotechnology, 2006, 6, 3296-3302.	0.9	56
86	Bioadhesive Mannosylated Nanoparticles for Oral Drug Delivery. Journal of Nanoscience and Nanotechnology, 2006, 6, 3203-3209.	0.9	54
87	Chemical and Biological Factors in the Control of Brucella and Brucellosis. Current Drug Delivery, 2006, 3, 359-365.	0.8	17
88	Intracellular killing of Brucella melitensis in human macrophages with microsphere-encapsulated gentamicin. Journal of Antimicrobial Chemotherapy, 2006, 58, 549-556.	1.3	59
89	BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Molecular Microbiology, 2005, 58, 1322-1339.	1.2	267
90	Salmonella-like bioadhesive nanoparticles. Journal of Controlled Release, 2005, 106, 1-13.	4.8	79

#	Article	IF	CITATIONS
91	Bioadhesive properties of pegylated nanoparticles. Expert Opinion on Drug Delivery, 2005, 2, 205-218.	2.4	66
92	Gentamicin-loaded microspheres for treatment of experimental Brucella abortus infection in mice. Journal of Antimicrobial Chemotherapy, 2005, 55, 1032-1036.	1.3	32
93	Protective ability of subcellular extracts from Salmonella Enteritidis and from a rough isogenic mutant against salmonellosis in mice. Vaccine, 2005, 23, 1491-1501.	1.7	16
94	New Therapeutic Approaches for the Treatment of Brucella Infections: Gentamicin Entrapment into Drug Delivery Systems. Anti-Infective Agents in Medicinal Chemistry, 2004, 3, 43-56.	0.9	7
95	Gentamicin-loaded microspheres for reducing the intracellular Brucella abortus load in infected monocytes. Journal of Antimicrobial Chemotherapy, 2004, 53, 981-988.	1.3	43
96	Influence of the co-encapsulation of different excipients on the properties of polyester microparticle-based vaccine against brucellosis. International Journal of Pharmaceutics, 2004, 271, 125-135.	2.6	17
97	Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Molecular Microbiology, 2004, 54, 264-277.	1.2	209
98	Humoral immune response in hens naturally infected withSalmonellaEnteritidis against outer membrane proteins and other surface structural antigens. Veterinary Research, 2004, 35, 291-298.	1.1	36
99	Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. Journal of Antimicrobial Chemotherapy, 2003, 52, 419-427.	1.3	57
100	Polyester Microparticles as a Vaccine Delivery System for Brucellosis: Influence of the Polymer on Release, Phagocytosis and Toxicity. Journal of Drug Targeting, 2002, 10, 211-219.	2.1	23
101	Modulation of the cellular immune response after oral or subcutaneous immunization with microparticles containing Brucella ovis antigens. Journal of Controlled Release, 2002, 85, 237-246.	4.8	38
102	In vitro phagocytosis and monocyte-macrophage activation with poly(lactide) and poly(lactide-co-glycolide) microspheres. European Journal of Pharmaceutical Sciences, 2002, 15, 197-207.	1.9	126
103	Genetic analysis ofSalmonella enteritidisbiofilm formation: critical role of cellulose. Molecular Microbiology, 2002, 43, 793-808.	1.2	462
104	In vitro evaluation of gentamicin released from microparticles. International Journal of Pharmaceutics, 2002, 242, 203-206.	2.6	31
105	Development of microparticles prepared by spray-drying as a vaccine delivery system against brucellosis. International Journal of Pharmaceutics, 2002, 242, 341-344.	2.6	46
106	A Brucella ovis antigenic complex bearing poly-Îμ-caprolactone microparticles confer protection against experimental brucellosis in mice. Vaccine, 2001, 19, 4099-4106.	1.7	45
107	Virulent strains of Salmonella enteritidis disrupt the epithelial barrier of Caco-2 and HEp-2 cells. Archives of Microbiology, 2001, 175, 46-51.	1.0	23
108	Promotion of platelet aggregation by sera from brucellosis patients with antiphosphatidylcholine antibodies. Journal of Medical Microbiology, 2001, 50, 965-968.	0.7	5

#	Article	IF	CITATIONS
109	Gentamicin encapsulation in PLA/PLGA microspheres in view of treating Brucella infections. International Journal of Pharmaceutics, 2000, 196, 115-125.	2.6	117
110	The relationship between glycogen synthesis, biofilm formation and virulence inSalmonella enteritidis. FEMS Microbiology Letters, 2000, 191, 31-36.	0.7	91
111	Anti-Phosphatidylcholine Antibodies in Patients with Brucellosis. Journal of Medical Microbiology, 1998, 47, 49-54.	0.7	9
112	Protective Effect of Liposomal Gentamicin against Systemic Acute Murine Brucellosis. Chemotherapy, 1997, 43, 204-210.	0.8	26
113	Poly(ε-caprolacton) nanospheres as an alternative way to reduce amphotericin B toxicity. International Journal of Pharmaceutics, 1997, 158, 19-27.	2.6	71
114	Inadequate Azithromycin Activity against <i>Brucella melitensis</i> in Mice with Acute or Chronic Infections. Journal of Chemotherapy, 1996, 8, 55-58.	0.7	4
115	Protective effect ofBrucellaouter membrane complex-bearing liposomes against experimental murine brucellosis. FEMS Microbiology Letters, 1995, 130, 231-236.	0.7	7
116	Antibiotic treatment induces an increase of the specific antibody levels inBrucella melitensisinfected mice. FEMS Immunology and Medical Microbiology, 1995, 12, 91-95.	2.7	11
117	Comparative activity of azithromycin and doxycycline against Brucella spp. infection in mice. Journal of Antimicrobial Chemotherapy, 1995, 36, 647-656.	1.3	17
118	Brucellagroup 3 outer membrane proteins contain a heat-modifiable protein. FEMS Microbiology Letters, 1993, 112, 141-145.	0.7	15
119	Evaluation of whole cell and subcellular vaccines against Brucella ovis in rams. Veterinary Immunology and Immunopathology, 1993, 37, 257-270.	0.5	48
120	An ELISA with Brucella lipopolysaccharide antigen for the diagnosis of B. melitensis infection in sheep and for the evaluation of serological responses following subcutaneous or conjunctival B. melitensis strain Rev 1 vaccination. Veterinary Microbiology, 1992, 30, 233-241.	0.8	79
121	Comparison of three serological tests for Brucella ovis infection of rams using different antigenic extracts. Veterinary Record, 1989, 125, 504-508.	0.2	49
122	Properties of the outer membrane of Brucella. Annales De L'Institut Pasteur Microbiologie, 1987, 138, 89-91.	0.8	19
123	NANOPARTICLES FOR ORAL VACCINATION. , 0, , 163-197.		0