Patricia Ruas-Madiedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Frontiers in Microbiology, 2016, 7, 185.	1.5	1,443
2	An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal, 2002, 12, 163-171.	1.5	498
3	Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World Journal of Gastroenterology, 2014, 20, 15163.	1.4	390
4	Invited Review: Methods for the Screening, Isolation, and Characterization of Exopolysaccharides Produced by Lactic Acid Bacteria. Journal of Dairy Science, 2005, 88, 843-856.	1.4	351
5	Bifidobacteria and Their Health-Promoting Effects. Microbiology Spectrum, 2017, 5, .	1.2	266
6	Bifidobacteria and Their Molecular Communication with the Immune System. Frontiers in Microbiology, 2017, 8, 2345.	1.5	221
7	Exopolysaccharides Produced by Probiotic Strains Modify the Adhesion of Probiotics and Enteropathogens to Human Intestinal Mucus. Journal of Food Protection, 2006, 69, 2011-2015.	0.8	201
8	Exopolysaccharides Produced by Intestinal <i>Bifidobacterium</i> Strains Act as Fermentable Substrates for Human Intestinal Bacteria. Applied and Environmental Microbiology, 2008, 74, 4737-4745.	1.4	197
9	Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Research International, 2004, 37, 839-850.	2.9	192
10	Mucin Degradation by <i>Bifidobacterium</i> Strains Isolated from the Human Intestinal Microbiota. Applied and Environmental Microbiology, 2008, 74, 1936-1940.	1.4	180
11	The relationship between phenolic compounds from diet and microbiota: impact on human health. Food and Function, 2015, 6, 2424-2439.	2.1	180
12	Interactions of Surface Exopolysaccharides From Bifidobacterium and Lactobacillus Within the Intestinal Environment. Frontiers in Microbiology, 2018, 9, 2426.	1.5	170
13	Effective Removal of Staphylococcal Biofilms by the Endolysin LysH5. PLoS ONE, 2014, 9, e107307.	1.1	164
14	Genomic Overview and Biological Functions of Exopolysaccharide Biosynthesis in Bifidobacterium spp. Applied and Environmental Microbiology, 2014, 80, 9-18.	1.4	159
15	Immune Modulation Capability of Exopolysaccharides Synthesised by Lactic Acid Bacteria and Bifidobacteria. Probiotics and Antimicrobial Proteins, 2012, 4, 227-237.	1.9	156
16	Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chemistry, 2016, 197, 658-663.	4.2	154
17	Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. Journal of Dairy Science, 2015, 98, 3622-3632.	1.4	144
18	Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures. International Journal of Food Microbiology, 2009, 135, 260-267.	2.1	143

#	Article	IF	CITATIONS
19	Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Scientific Reports, 2020, 10, 14112.	1.6	140
20	Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota. Critical Reviews in Food Science and Nutrition, 2016, 56, 1440-1453.	5.4	139
21	Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. International Dairy Journal, 2002, 12, 689-695.	1.5	130
22	The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Scientific Reports, 2019, 9, 120.	1.6	126
23	Adaptation and Response of <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> to Bile: a Proteomic and Physiological Approach. Applied and Environmental Microbiology, 2007, 73, 6757-6767.	1.4	125
24	The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chemistry, 2017, 218, 249-255.	4.2	115
25	Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. Journal of Dairy Science, 2009, 92, 4158-4168.	1.4	113
26	Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. International Journal of Food Microbiology, 2012, 158, 155-162.	2.1	113
27	Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. International Journal of Food Microbiology, 2011, 149, 28-36.	2.1	109
28	Role of Extracellular Transaldolase from Bifidobacterium bifidum in Mucin Adhesion and Aggregation. Applied and Environmental Microbiology, 2012, 78, 3992-3998.	1.4	109
29	Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow's intestine. International Journal of Food Microbiology, 2011, 147, 97-104.	2.1	108
30	Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells. Food Research International, 2012, 46, 99-107.	2.9	102
31	Bile Affects the Synthesis of Exopolysaccharides by <i>Bifidobacterium animalis</i> . Applied and Environmental Microbiology, 2009, 75, 1204-1207.	1.4	100
32	How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes and Nutrition, 2011, 6, 307-318.	1.2	94
33	Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells. Journal of Applied Microbiology, 2010, 109, 2079-2086.	1.4	89
34	EPS-SJ Exopolisaccharide Produced by the Strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 Is Involved in Adhesion to Epithelial Intestinal Cells and Decrease on E. coli Association to Caco-2 Cells. Frontiers in Microbiology, 2016, 7, 286.	1.5	88
35	Cell envelope changes in <i>Bifidobacterium animalis</i> ssp. <i>lactis</i> as a response to bile. FEMS Microbiology Letters, 2007, 274, 316-322.	0.7	85
36	Interactions between Bifidobacterium and Bacteroides Species in Cofermentations Are Affected by Carbon Sources, Including Exopolysaccharides Produced by Bifidobacteria. Applied and Environmental Microbiology, 2013, 79, 7518-7524.	1.4	82

#	Article	IF	CITATIONS
37	Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. International Journal of Food Microbiology, 2010, 142, 132-141.	2.1	78
38	Screening of Exopolysaccharide-Producing Lactobacillus and Bifidobacterium Strains Isolated from the Human Intestinal Microbiota. Applied and Environmental Microbiology, 2007, 73, 4385-4388.	1.4	75
39	Pilot Study of Diet and Microbiota: Interactive Associations of Fibers and Polyphenols with Human Intestinal Bacteria. Journal of Agricultural and Food Chemistry, 2014, 62, 5330-5336.	2.4	75
40	Molecules Produced by Probiotics and Intestinal Microorganisms with Immunomodulatory Activity. Nutrients, 2020, 12, 391.	1.7	74
41	Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutrition Research, 2013, 33, 811-816.	1.3	70
42	Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010. Anaerobe, 2013, 21, 9-17.	1.0	67
43	Bifidobacterium bifidum PRL2010 Modulates the Host Innate Immune Response. Applied and Environmental Microbiology, 2014, 80, 730-740.	1.4	67
44	Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology. PLoS ONE, 2016, 11, e0163966.	1.1	67
45	Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats. International Journal of Food Microbiology, 2011, 144, 342-351.	2.1	66
46	Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates. Frontiers in Microbiology, 2016, 7, 738.	1.5	66
47	Rheology and bioactivity of high molecular weight dextrans synthesised by lactic acid bacteria. Carbohydrate Polymers, 2017, 174, 646-657.	5.1	66
48	A Bile Salt-Resistant Derivative of Bifidobacterium animalis Has an Altered Fermentation Pattern When Grown on Glucose and Maltose. Applied and Environmental Microbiology, 2005, 71, 6564-6570.	1.4	65
49	Microbial Targets for the Development of Functional Foods Accordingly with Nutritional and Immune Parameters Altered in the Elderly. Journal of the American College of Nutrition, 2013, 32, 399-406.	1.1	65
50	Valorization of Vegetable Food Waste and By-Products Through Fermentation Processes. Frontiers in Microbiology, 2020, 11, 581997.	1.5	60
51	Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster. Carbohydrate Research, 2011, 346, 2710-2717.	1.1	59
52	Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. International Journal of Food Microbiology, 2014, 178, 50-59.	2.1	59
53	Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis. Frontiers in Microbiology, 2015, 5, 766.	1.5	59
54	Chemical and biological properties of the novel exopolysaccharide produced by a probiotic strain of Bifidobacterium longum. Carbohydrate Polymers, 2017, 174, 1172-1180.	5.1	59

#	Article	IF	CITATIONS
55	Bacterial diversity of the Colombian fermented milk "Suero Costeño―assessed by culturing and high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. Food Microbiology, 2017, 68, 129-136.	2.1	54
56	Preservation of the Microbiological and Biochemical Quality of Raw Milk by Carbon Dioxide Addition: A Pilot-Scale Study. Journal of Food Protection, 1996, 59, 502-508.	0.8	53
57	Bifidogenic effect and stimulation of short chain fatty acid production in human faecal slurry cultures by oligosaccharides derived from lactose and lactulose. Journal of Dairy Research, 2009, 76, 317-325.	0.7	53
58	Exopolysaccharide-producing Bifidobacterium animalis subsp. lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue. Anaerobe, 2014, 26, 24-30.	1.0	53
59	Short Communication: Effect of Exopolysaccharide Isolated from "Viili―on the Adhesion of Probiotics and Pathogens to Intestinal Mucus. Journal of Dairy Science, 2006, 89, 2355-2358.	1.4	52
60	Technological and probiotic selection criteria of a bile-adapted Bifidobacterium animalis subsp. lactis strain. International Dairy Journal, 2010, 20, 800-805.	1.5	52
61	Interaction of Bifidobacterium bifidum LMG13195 with HT29 Cells Influences Regulatory-T-Cell-Associated Chemokine Receptor Expression. Applied and Environmental Microbiology, 2012, 78, 2850-2857.	1.4	52
62	Screening of Bifidobacteria and Lactobacilli Able to Antagonize the Cytotoxic Effect of Clostridium difficile upon Intestinal Epithelial HT29 Monolayer. Frontiers in Microbiology, 2016, 7, 577.	1.5	51
63	In vitro fermentation of different fructo-oligosaccharides by Bifidobacterium strains for the selection of synbiotic combinations. International Journal of Food Microbiology, 2017, 242, 19-23.	2.1	50
64	Adaptation of bifidobacteria to the gastrointestinal tract and functional consequences. Pharmacological Research, 2013, 69, 127-136.	3.1	48
65	Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria. BMC Microbiology, 2016, 16, 150.	1.3	48
66	Effect of a Ropy Exopolysaccharide-Producing Bifidobacterium animalis subsp. lactis Strain Orally Administered on DSS-Induced Colitis Mice Model. Frontiers in Microbiology, 2016, 7, 868.	1.5	45
67	Toward improving technological and functional properties of probiotics in foods. Trends in Food Science and Technology, 2012, 26, 56-63.	7.8	44
68	Modulation of the <i>eps</i> -ome transcription of bifidobacteria through simulation of human intestinal environment. FEMS Microbiology Ecology, 2016, 92, fiw056.	1.3	44
69	Adhesion of bile-adapted Bifidobacterium strains to the HT29-MTX cell line is modified after sequential gastrointestinal challenge simulated in vitro using human gastric and duodenal juices. Research in Microbiology, 2011, 162, 514-519.	1.0	40
70	Spermine and spermidine are cytotoxic towards intestinal cell cultures, but are they a health hazard at concentrations found in foods?. Food Chemistry, 2018, 269, 321-326.	4.2	40
71	Molecular Clues To Understand the Aerotolerance Phenotype of Bifidobacterium animalis subsp. lactis. Applied and Environmental Microbiology, 2012, 78, 644-650.	1.4	39
72	Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11. Applied and Environmental Microbiology, 2015, 81, 1387-1396.	1.4	39

#	Article	IF	CITATIONS
73	In-vitro characterization of potentially probiotic Lactobacillus strains isolated from human microbiota: interaction with pathogenic bacteria and the enteric cell line HT29. Annals of Microbiology, 2019, 69, 61-72.	1.1	39
74	Acquired resistance to bile increases fructose-6-phosphate phosphoketolase activity inBifidobacterium. FEMS Microbiology Letters, 2004, 235, 35-41.	0.7	38
75	<i>Lactobacillus plantarum</i> Extracellular Chitin-Binding Protein and Its Role in the Interaction between Chitin, Caco-2 Cells, and Mucin. Applied and Environmental Microbiology, 2011, 77, 1123-1126.	1.4	38
76	A Single Mutation in the Gene Responsible for the Mucoid Phenotype of Bifidobacterium animalis subsp. lactis Confers Surface and Functional Characteristics. Applied and Environmental Microbiology, 2015, 81, 7960-7968.	1.4	38
77	Effect of exopolysaccharides and proteolytic activity of Lactococcus lactis subsp. cremoris strains on the viscosity and structure of fermented milks. International Dairy Journal, 2005, 15, 155-164.	1.5	35
78	Potentially probiotic and bioprotective lactic acid bacteria starter cultures antagonise the Listeria monocytogenes adhesion to HT29 colonocyte-like cells. Beneficial Microbes, 2015, 6, 337-343.	1.0	35
79	Functional Effects of EPS-Producing Bifidobacterium Administration on Energy Metabolic Alterations of Diet-Induced Obese Mice. Frontiers in Microbiology, 2019, 10, 1809.	1.5	35
80	Immune Modulating Capability of Two Exopolysaccharide-Producing <i>Bifidobacterium</i> Strains in a Wistar Rat Model. BioMed Research International, 2014, 2014, 1-9.	0.9	32
81	Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. Food Research International, 2015, 74, 199-207.	2.9	31
82	Probiotics for Prevention and Treatment of Clostridium difficile Infection. Advances in Experimental Medicine and Biology, 2018, 1050, 161-176.	0.8	31
83	Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocolloids, 2019, 89, 613-622.	5.6	31
84	Effect of exopolysaccharide-producing Lactococcus lactis strains and temperature on the permeability of skim milk gels Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 213, 245-253.	2.3	30
85	Proteinaceous Molecules Mediating Bifidobacterium-Host Interactions. Frontiers in Microbiology, 2016, 7, 1193.	1.5	30
86	Interindividual Differences in Microbial Counts and Biochemical-Associated Variables in the Feces of Healthy Spanish Adults. Digestive Diseases and Sciences, 2006, 51, 737-743.	1.1	29
87	Effects of Xylitol on Xylitol-Sensitive Versus Xylitol-Resistant Streptococcus mutans Strains in a Three-Species in Vitro Biofilm. Current Microbiology, 2012, 65, 237-243.	1.0	29
88	Susceptibility of lactic acid bacteria, bifidobacteria and other bacteria of intestinal origin to chemotherapeutic agents. International Journal of Antimicrobial Agents, 2016, 48, 547-550.	1.1	29
89	Proteomic profile of extracellular vesicles released by Lactiplantibacillus plantarum BGAN8 and their internalization by non-polarized HT29 cell line. Scientific Reports, 2020, 10, 21829.	1.6	29
90	In Vitro Evaluation of Different Prebiotics on the Modulation of Gut Microbiota Composition and Function in Morbid Obese and Normal-Weight Subjects. International Journal of Molecular Sciences, 2020, 21, 906.	1.8	29

#	Article	IF	CITATIONS
91	Exopolysaccharide-producing lactic acid bacteria isolated from traditional Algerian dairy products and their application for skim-milk fermentations. LWT - Food Science and Technology, 2019, 107, 117-124.	2.5	28
92	Real-Time Assessment of Staphylococcus aureus Biofilm Disruption by Phage-Derived Proteins. Frontiers in Microbiology, 2017, 8, 1632.	1.5	27
93	Characterization of Exopolysaccharides Produced by <i>Bifidobacterium longum</i> NB667 and Its Cholate-Resistant Derivative Strain IPLA B667dCo. Journal of Agricultural and Food Chemistry, 2012, 60, 1028-1035.	2.4	26
94	Red Wine Consumption Is Associated with Fecal Microbiota and Malondialdehyde in a Human Population. Journal of the American College of Nutrition, 2015, 34, 135-141.	1.1	26
95	Lysin LysMK34 of <i>Acinetobacter baumannii</i> Bacteriophage PMK34 Has a Turgor Pressure-Dependent Intrinsic Antibacterial Activity and Reverts Colistin Resistance. Applied and Environmental Microbiology, 2020, 86, .	1.4	25
96	Influence of Carbon Dioxide Addition to Raw Milk on Microbial Levels and Some Fat-Soluble Vitamin Contents of Raw and Pasteurized Milk. Journal of Agricultural and Food Chemistry, 1998, 46, 1552-1555.	2.4	23
97	Microbial, chemical and sensorial variables of the Spanish traditional blue-veined Cabrales cheese, as affected by inoculation with commercial Penicillium roqueforti spores. European Food Research and Technology, 2006, 222, 250-257.	1.6	23
98	Gene Replacement and Fluorescent Labeling to Study the Functional Role of Exopolysaccharides in Bifidobacterium animalis subsp. lactis. Frontiers in Microbiology, 2017, 8, 1405.	1.5	22
99	The role of dextran production in the metabolic context of Leuconostoc and Weissella Tunisian strains. Carbohydrate Polymers, 2021, 253, 117254.	5.1	22
100	The Effects of <i>Bifidobacterium breve</i> on Immune Mediators and Proteome of HT29 Cells Monolayers. BioMed Research International, 2015, 2015, 1-6.	0.9	21
101	Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29. Journal of Microbiological Methods, 2015, 119, 66-73.	0.7	20
102	Insights into the Ropy Phenotype of the Exopolysaccharide-Producing Strain Bifidobacterium animalis subsp. <i>lactis</i> A1dOxR. Applied and Environmental Microbiology, 2013, 79, 3870-3874.	1.4	19
103	Genotypic and Phenotypic Characterization of Fecal Staphylococcus epidermidis Isolates Suggests Plasticity to Adapt to Different Human Body Sites. Frontiers in Microbiology, 2020, 11, 688.	1.5	19
104	Impact of Extreme Obesity and Dietâ€Induced Weight Loss on the Fecal Metabolome and Gut Microbiota. Molecular Nutrition and Food Research, 2021, 65, e2000030.	1.5	19
105	Technological characterization and survival of the exopolysaccharide-producing strain <i>Lactobacillus delbrueckii</i> subsp. <i>lactis</i> 193 and its bile-resistant derivative 193+ in simulated gastric and intestinal juices. Journal of Dairy Research, 2011, 78, 357-364.	0.7	18
106	Bioactive compounds from regular diet and faecal microbial metabolites. European Journal of Nutrition, 2018, 57, 487-497.	1.8	18
107	Selection of Exopolysaccharide-Producing Lactobacillus Plantarum (Lactiplantibacillus Plantarum) Isolated from Algerian Fermented Foods for the Manufacture of Skim-Milk Fermented Products. Microorganisms, 2020, 8, 1101.	1.6	18
108	Engineering a Lysin with Intrinsic Antibacterial Activity (LysMK34) by Cecropin A Fusion Enhances Its Antibacterial Properties against Acinetobacter baumannii. Applied and Environmental Microbiology, 2022, 88, AEM0151521.	1.4	17

PATRICIA RUAS-MADIEDO

#	Article	IF	CITATIONS
109	Afuega'l Pitu Cheese Quality: Carbon Dioxide Addition to Refrigerated Milk in Acid-coagulated Cheesemaking. International Dairy Journal, 1998, 8, 951-958.	1.5	16
110	Development of probiotic products for nutritional requirements of specific human populations. Engineering in Life Sciences, 2012, 12, 368-376.	2.0	16
111	Exopolysaccharides synthesized by Bifidobacterium animalis subsp. lactis interact with TLR4 in interact interact with TLR4 in	1.0	15
112	Acquired resistance to bile increases fructose-6-phosphate phosphoketolase activity in Bifidobacterium. FEMS Microbiology Letters, 2004, 235, 35-41.	0.7	14
113	Manufacture of Spanish hard cheeses from CO2-treated milk. Food Research International, 2002, 35, 681-690.	2.9	13
114	Exopolysaccharides produced by lactic acid bacteria in food and probiotic applications. , 2010, , 885-902.		13
115	Bifidobacteria and Their Health-Promoting Effects. , 2018, , 73-98.		13
116	Bifidobacterium longum subsp. infantis CECT7210 (B. infantis IM-1®) Displays In Vitro Activity against Some Intestinal Pathogens. Nutrients, 2020, 12, 3259.	1.7	13
117	Functional bacterial cultures for dairy applications: Towards improving safety, quality, nutritional and health benefit aspects. Journal of Applied Microbiology, 2022, 133, 212-229.	1.4	13
118	Complete Genome Sequence of Streptococcus salivarius PS4, a Strain Isolated from Human Milk. Journal of Bacteriology, 2012, 194, 4466-4467.	1.0	12
119	Protective Effect of an Exopolysaccharide Produced by Lactiplantibacillus plantarum BGAN8 Against Cadmium-Induced Toxicity in Caco-2 Cells. Frontiers in Microbiology, 2021, 12, 759378.	1.5	12
120	Effect of bacteria used in food industry on the proliferation and cytokine production of epithelial intestinal cellular lines. Journal of Functional Foods, 2014, 6, 348-355.	1.6	11
121	Revisiting the Metabolic Capabilities of Bifidobacterium longum susbp. longum and Bifidobacterium longum subsp. infantis from a Glycoside Hydrolase Perspective. Microorganisms, 2020, 8, 723.	1.6	11
122	Biological Activities and Applications of Bifidobacterial Exopolysaccharides: From the Bacteria and Host Perspective. , 2018, , 177-193.		10
123	Design and Selection of Engineered Lytic Proteins With Staphylococcus aureus Decolonizing Activity. Frontiers in Microbiology, 2021, 12, 723834.	1.5	10
124	Growth and metabolic activity of a cheese starter in CO 2 -acidified and non-acidified refrigerated milk. European Food Research and Technology, 1998, 206, 179-183.	0.6	8
125	In vitro Selection of Probiotics for Microbiota Modulation in Normal-Weight and Severely Obese Individuals: Focus on Gas Production and Interaction With Intestinal Epithelial Cells. Frontiers in Microbiology, 2021, 12, 630572.	1.5	8
126	Effect of acquired resistance to bile salts on enzymatic activities involved in the utilisation of carbohydrates by bifidobacteria. An overview. Dairy Science and Technology, 2005, 85, 113-123.	0.9	8

#	Article	IF	CITATIONS
127	"Masato de Yuca―and "Chicha de Siete Semillas―Two Traditional Vegetable Fermented Beverages from Peru as Source for the Isolation of Potential Probiotic Bacteria. Probiotics and Antimicrobial Proteins, 2023, 15, 300-311.	1.9	7
128	Impact of engineered Streptococcus thermophilus trains overexpressing glyA gene on folic acid and acetaldehyde production in fermented milk. Brazilian Journal of Microbiology, 0, 34, 114-117.	0.8	7
129	Novel methods of microbiome analysis in the food industry. International Microbiology, 2021, 24, 593-605.	1.1	7
130	Co-culture affects protein profile and heat tolerance of Lactobacillus delbrueckii subsp. lactis and Bifidobacterium longum. Food Research International, 2013, 54, 1080-1083.	2.9	5
131	Population Dynamics of Some Relevant Intestinal Microbial Groups in Human Fecal Batch Cultures with Added Fermentable Xylooligosaccharides Obtained from Rice Husks. BioResources, 2013, 8, .	0.5	5
132	Degenerate PCR primers for detecting putative priming glycosyltransferase genes in Bifidobacterium strains. Beneficial Microbes, 2015, 6, 553-562.	1.0	5
133	Exopolysaccharide Producing Bifidobacterium animalis subsp. lactis Strains Modify the Intestinal Microbiota and the Plasmatic Cytokine Levels of BALB/c Mice According to the Type of Polymer Synthesized. Frontiers in Microbiology, 2020, 11, 601233.	1.5	5
134	Proteolysis in rennet-coagulated Spanish hard cheeses made from milk preserved by refrigeration and addition of carbon dioxide. Journal of Dairy Research, 2003, 70, 115-122.	0.7	4
135	Production of human growth hormone by Lactococcus lactis. Journal of Bioscience and Bioengineering, 2010, 109, 322-324.	1.1	4
136	Effect of inulin-type fructans and galactooligosaccharides on cultures of <i>Lactobacillus</i> strains isolated in Algeria from camel's milk and human colostrum. Food Science and Technology International, 2021, 27, 223-233.	1.1	4
137	Complete Genome Sequence of Bifidobacterium longum W11 (LMG P-21586), Used as a Probiotic Strain. Genome Announcements, 2017, 5, .	0.8	3
138	A structurally unique Fusobacterium nucleatum tannase provides detoxicant activity against gallotannins and pathogen resistance. Microbial Biotechnology, 2020, , .	2.0	3
139	Mechanisms of Gut Microbiota Modulation by Food, Probiotics, Prebiotics and More. , 2021, , 84-84.		1
140	Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer's Disease-Related Pathways in the SH-SY5Y Neural Cell Line. Nutrients, 2021, 13, 3868.	1.7	1
141	3rd International Symposium on Propionibacteria and Bifidobacteria: Dairy and Probiotic Applications, Oviedo 1–4 June 2010. International Journal of Food Microbiology, 2011, 149, 1.	2.1	0
142	Evidence of the In Vitro and In Vivo Immunological Relevance of Bifidobacteria. , 2018, , 295-305.		0
143	Detection, Isolation, and Purification of Bifidobacterial Exopolysaccharides. Methods in Molecular Biology, 2021, 2278, 101-115.	0.4	0