Elmar Villota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5546974/publications.pdf Version: 2024-02-01

FIMAR VILLOTA

#	Article	IF	CITATIONS
1	One-step synthesis of biomass-based sulfonated carbon catalyst by direct carbonization-sulfonation for organosolv delignification. Bioresource Technology, 2021, 319, 124194.	9.6	27
2	High yield production of nanocrystalline cellulose by microwave-assisted dilute-acid pretreatment combined with enzymatic hydrolysis. Chemical Engineering and Processing: Process Intensification, 2021, 160, 108292.	3.6	14
3	Enhanced production of renewable aromatic hydrocarbons for jet-fuel from softwood biomass and plastic waste using hierarchical ZSM-5 modified with lignin-assisted re-assembly. Energy Conversion and Management, 2021, 236, 114020.	9.2	42
4	Lignin-Mediated Preparation of Hierarchical ZSM-5 Catalysts and Their Effects in the Catalytic Co-pyrolysis of Softwood Biomass and Low-Density Polyethylene Mixtures. ACS Sustainable Chemistry and Engineering, 2021, 9, 12602-12613.	6.7	18
5	Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics. Bioresource Technology, 2020, 297, 122411.	9.6	75
6	From Douglas fir to renewable H ₂ -enriched syngas <i>via ex situ</i> catalytic pyrolysis over metal nanoparticles–nanocellulose derived carbon catalysts. Sustainable Energy and Fuels, 2020, 4, 1084-1087.	4.9	4
7	<i>Development of meso-microstructure in MFI zeolites via nanocrystalline cellulose templating for conversion of lignocellulosic biomass to aromatic hydrocarbons</i> . , 2020, , .		0
8	A novel production of phase-divided jet-fuel-range hydrocarbons and phenol-enriched chemicals from catalytic co-pyrolysis of lignocellulosic biomass with low-density polyethylene over carbon catalysts. Sustainable Energy and Fuels, 2020, 4, 3687-3700.	4.9	20
9	Enhancing jet fuel range hydrocarbons production from catalytic co-pyrolysis of Douglas fir and low-density polyethylene over bifunctional activated carbon catalysts. Energy Conversion and Management, 2020, 211, 112757.	9.2	47
10	Optimization of delignification from Douglas fir sawdust by alkaline pretreatment with sodium hydroxide and its effect on structural and chemical properties of lignin and pyrolysis products. Bioresource Technology Reports, 2019, 8, 100339.	2.7	11
11	Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Applied Energy, 2019, 251, 113337.	10.1	191
12	Microwave-Assisted Activation of Waste Cocoa Pod Husk by H ₃ PO ₄ and KOH—Comparative Insight into Textural Properties and Pore Development. ACS Omega, 2019, 4, 7088-7095.	3.5	36
13	Renewable jet-fuel range hydrocarbons production from co-pyrolysis of lignin and soapstock with the activated carbon catalyst. Waste Management, 2019, 88, 1-9.	7.4	49
14	Renewable High-Purity Mono-Phenol Production from Catalytic Microwave-Induced Pyrolysis of Cellulose over Biomass-Derived Activated Carbon Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 5349-5357.	6.7	91
15	Renewable bio-phenols from <i>in situ</i> and <i>ex situ</i> catalytic pyrolysis of <i>Douglas fir</i> pellet over biobased activated carbons. Sustainable Energy and Fuels, 2018, 2, 894-904.	4.9	23
16	Process design and economics for the conversion of lignocellulosic biomass into jet fuel range cycloalkanes. Energy, 2018, 154, 289-297.	8.8	38
17	Production of renewable alkyl-phenols from catalytic pyrolysis of Douglas fir sawdust over biomass-derived activated carbons. Applied Energy, 2018, 220, 426-436.	10.1	104
18	Optimizing Microwave-Assisted Pyrolysis of Phosphoric Acid-Activated Biomass: Impact of Concentration on Heating Rate and Carbonization Time. ACS Sustainable Chemistry and Engineering, 2018, 6, 1318-1326.	6.7	59

Elmar Villota

#	Article	IF	CITATIONS
19	New Insight into the Mechanism of the Hydrogen Evolution Reaction on MoP(001) from First Principles. ACS Applied Materials & Interfaces, 2018, 10, 20429-20439.	8.0	67
20	From glucose-based carbohydrates to phenol-rich bio-oils integrated with syngas production <i>via</i> catalytic pyrolysis over an activated carbon catalyst. Green Chemistry, 2018, 20, 3346-3358.	9.0	87
21	The effect of canola protein extraction conditions on the kinetic parameters of a two-site extraction model. , 2017, , .		0