
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554668/publications.pdf Version: 2024-02-01



LIOZ ETCAR

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mesoscopic CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> /TiO <sub>2</sub> Heterojunction Solar<br>Cells. Journal of the American Chemical Society, 2012, 134, 17396-17399.                             | 13.7 | 1,801     |
| 2  | Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy and Environmental Science, 2013, 6, 3249.                                                                               | 30.8 | 702       |
| 3  | Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under<br>Concentrated Sunlight. Journal of Physical Chemistry Letters, 2015, 6, 326-330.                             | 4.6  | 472       |
| 4  | Depletion region effect of highly efficient hole conductor free<br>CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> perovskite solar cells. Physical Chemistry Chemical<br>Physics, 2014, 16, 10512-10518. | 2.8  | 252       |
| 5  | Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar<br>Cell. Journal of Physical Chemistry C, 2014, 118, 17160-17165.                                      | 3.1  | 211       |
| 6  | Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics. Advanced Materials, 2011, 23, 3134-3138.                                                                                                 | 21.0 | 206       |
| 7  | The merit of perovskite's dimensionality; can this replace the 3D halide perovskite?. Energy and Environmental Science, 2018, 11, 234-242.                                                                 | 30.8 | 196       |
| 8  | Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. Journal of Materials Chemistry A, 2015, 3, 9171-9178.                                                | 10.3 | 191       |
| 9  | High Efficiency and High Open Circuit Voltage in Quasi 2D Perovskite Based Solar Cells. Advanced<br>Functional Materials, 2017, 27, 1604733.                                                               | 14.9 | 181       |
| 10 | Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties. Nano<br>Letters, 2016, 16, 3230-3235.                                                                              | 9.1  | 165       |
| 11 | Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution. Nanoscale, 2016, 8, 6403-6409.                                                               | 5.6  | 164       |
| 12 | Dion–Jacobson Two-Dimensional Perovskite Solar Cells Based on Benzene Dimethanammonium Cation.<br>Nano Letters, 2019, 19, 2588-2597.                                                                       | 9.1  | 155       |
| 13 | High Efficiency Quantum Dot Heterojunction Solar Cell Using Anatase (001) TiO <sub>2</sub><br>Nanosheets. Advanced Materials, 2012, 24, 2202-2206.                                                         | 21.0 | 150       |
| 14 | Current Density Mismatch in Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2886-2888.                                                                                                                | 17.4 | 146       |
| 15 | Light Energy Conversion by Mesoscopic PbS Quantum Dots/TiO <sub>2</sub> Heterojunction Solar<br>Cells. ACS Nano, 2012, 6, 3092-3099.                                                                       | 14.6 | 132       |
| 16 | Tunable Length and Optical Properties of CsPbX <sub>3</sub> (X = Cl, Br, I) Nanowires with a Few Unit<br>Cells. Nano Letters, 2017, 17, 1007-1013.                                                         | 9.1  | 129       |
| 17 | Semitransparent Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1519-1531.                                                                                                                            | 17.4 | 118       |
| 18 | Lowâ€Dimensional Organic–Inorganic Halide Perovskite: Structure, Properties, and Applications.<br>ChemSusChem, 2017, 10, 3712-3721.                                                                        | 6.8  | 100       |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Core/Shell PbSe/PbS QDs TiO <sub>2</sub> Heterojunction Solar Cell. Advanced Functional Materials, 2013, 23, 2736-2741.                                                                              | 14.9 | 99        |
| 20 | High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules.<br>Sustainable Energy and Fuels, 2017, 1, 1935-1943.                                                   | 4.9  | 96        |
| 21 | Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells. APL Materials, 2014, 2, .                                            | 5.1  | 93        |
| 22 | Inorganic and Hybrid Organoâ€Metal Perovskite Nanostructures: Synthesis, Properties, and<br>Applications. Advanced Functional Materials, 2016, 26, 8576-8593.                                        | 14.9 | 92        |
| 23 | The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Scientific Reports, 2015, 5, 8704.                                                 | 3.3  | 91        |
| 24 | Effect of Interfacial Engineering in Solid‣tate Nanostructured Sb <sub>2</sub> S <sub>3</sub><br>Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 29-33.                              | 19.5 | 85        |
| 25 | Near ultra-violet to mid-visible band gap tuning of mixed cation<br>Rb <sub>x</sub> Cs <sub>1â^'x</sub> PbX <sub>3</sub> (X = Cl or Br) perovskite nanoparticles. Nanoscale,<br>2018, 10, 6060-6068. | 5.6  | 82        |
| 26 | Free Carrier Emergence and Onset of Electron–Phonon Coupling in Methylammonium Lead Halide<br>Perovskite Films. Journal of the American Chemical Society, 2017, 139, 18262-18270.                    | 13.7 | 78        |
| 27 | Ga <sup>3+</sup> and Y <sup>3+</sup> Cationic Substitution in Mesoporous TiO <sub>2</sub><br>Photoanodes for Photovoltaic Applications. Journal of Physical Chemistry C, 2011, 115, 9232-9240.       | 3.1  | 73        |
| 28 | A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a<br>panchromatic response. Journal of Materials Chemistry A, 2014, 2, 11586-11590.                          | 10.3 | 73        |
| 29 | Semiconductor Nanocrystals as Light Harvesters in Solar Cells. Materials, 2013, 6, 445-459.                                                                                                          | 2.9  | 69        |
| 30 | Effect of Perovskite Thickness on Electroluminescence and Solar Cell Conversion Efficiency. Journal of Physical Chemistry Letters, 2020, 11, 8189-8194.                                              | 4.6  | 68        |
| 31 | Effect of Cs on the Stability and Photovoltaic Performance of 2D/3D Perovskite-Based Solar Cells. ACS Energy Letters, 2018, 3, 366-372.                                                              | 17.4 | 64        |
| 32 | High voltage in hole conductor free organo metal halide perovskite solar cells. Journal of Materials<br>Chemistry A, 2014, 2, 20776-20781.                                                           | 10.3 | 62        |
| 33 | Effect of Halide Composition on the Photochemical Stability of Perovskite Photovoltaic Materials.<br>ChemSusChem, 2016, 9, 2572-2577.                                                                | 6.8  | 62        |
| 34 | Selfâ€Assembly of Perovskite for Fabrication of Semitransparent Perovskite Solar Cells. Advanced<br>Materials Interfaces, 2015, 2, 1500118.                                                          | 3.7  | 61        |
| 35 | Impact of Antisolvent Treatment on Carrier Density in Efficient Hole-Conductor-Free Perovskite-Based<br>Solar Cells. Journal of Physical Chemistry C, 2016, 120, 142-147.                            | 3.1  | 61        |
| 36 | Methylammoniumâ€Mediated Evolution of Mixedâ€Organicâ€Cation Perovskite Thin Films: A Dynamic<br>Compositionâ€Tuning Process. Angewandte Chemie - International Edition, 2017, 56, 7674-7678.        | 13.8 | 59        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Enhancing Stability and Photostability of CsPbl <sub>3</sub> by Reducing Its Dimensionality. Chemistry of Materials, 2018, 30, 8017-8024.                                                                                                       | 6.7  | 59        |
| 38 | Environmentalâ€Friendly Polymer for Efficient and Stable Inverted Perovskite Solar Cells with<br>Mitigating Lead Leakage. Advanced Functional Materials, 2022, 32, .                                                                            | 14.9 | 59        |
| 39 | Enhancing the efficiency of a dye sensitized solar cell due to the energy transfer between CdSe quantum dots and a designed squaraine dye. RSC Advances, 2012, 2, 2748.                                                                         | 3.6  | 56        |
| 40 | Organo-metal perovskite based solar cells: sensitized versus planar architecture. RSC Advances, 2014,<br>4, 29012-29021.                                                                                                                        | 3.6  | 55        |
| 41 | Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Letters, 2022, 7, 1412-1445.                                                                                                               | 17.4 | 54        |
| 42 | Fully 2D and 3D printed anisotropic mechanoluminescent objects and their application for energy harvesting in the dark. Materials Horizons, 2018, 5, 708-714.                                                                                   | 12.2 | 53        |
| 43 | Parameters that control and influence the organo-metal halide perovskite crystallization and morphology. Frontiers of Optoelectronics, 2016, 9, 44-52.                                                                                          | 3.7  | 50        |
| 44 | An efficient DSSC based on ZnO nanowire photo-anodes and a new D-Ï€-A organic dye. Energy and<br>Environmental Science, 2011, 4, 2903.                                                                                                          | 30.8 | 49        |
| 45 | Micrometer Sized Perovskite Crystals in Planar Hole Conductor Free Solar Cells. Journal of Physical<br>Chemistry C, 2015, 119, 19722-19728.                                                                                                     | 3.1  | 45        |
| 46 | Hierarchical Conjugate Structure of γ-Fe2O3Nanoparticles and PbSe Quantum Dots for Biological<br>Applications. Journal of Physical Chemistry C, 2007, 111, 6238-6244.                                                                           | 3.1  | 42        |
| 47 | High Open Circuit Voltage in Sb <sub>2</sub> S <sub>3</sub> /Metal Oxide-Based Solar Cells. Journal of<br>Physical Chemistry C, 2015, 119, 12904-12909.                                                                                         | 3.1  | 41        |
| 48 | Hole-transport material-free perovskite-based solar cells. MRS Bulletin, 2015, 40, 674-680.                                                                                                                                                     | 3.5  | 39        |
| 49 | Spatially Heterogeneous Chlorine Incorporation in Organic–Inorganic Perovskite Solar Cells.<br>Chemistry of Materials, 2016, 28, 6536-6543.                                                                                                     | 6.7  | 39        |
| 50 | The Effect of the Alkylammonium Ligand's Length on Organic–Inorganic Perovskite Nanoparticles. ACS<br>Energy Letters, 2018, 3, 1387-1393.                                                                                                       | 17.4 | 39        |
| 51 | Reflectivity Effects on Pump–Probe Spectra of Lead Halide Perovskites: Comparing Thin Films<br><i>versus</i> Nanocrystals. ACS Nano, 2018, 12, 5719-5725.                                                                                       | 14.6 | 35        |
| 52 | Enhancing the open circuit voltage of dye sensitized solar cells by surface engineering of silica particles in a gel electrolyte. Journal of Materials Chemistry A, 2013, 1, 10142.                                                             | 10.3 | 33        |
| 53 | CH <sub>3</sub> NH <sub>2</sub> gas induced (110) preferred cesium-containing perovskite films with<br>reduced PbI <sub>6</sub> octahedron distortion and enhanced moisture stability. Journal of<br>Materials Chemistry A, 2017, 5, 4803-4808. | 10.3 | 33        |
| 54 | Studying the Effect of MoO <sub>3</sub> in Hole-Conductor-Free Perovskite Solar Cells. ACS Energy<br>Letters, 2018, 3, 2240-2245.                                                                                                               | 17.4 | 33        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Parameters Influencing the Growth of ZnO Nanowires as Efficient Low Temperature Flexible<br>Perovskite-Based Solar Cells. Materials, 2016, 9, 60.                                                                    | 2.9  | 32        |
| 56 | Inhibiting metal-inward diffusion-induced degradation through strong chemical coordination<br>toward stable and efficient inverted perovskite solar cells. Energy and Environmental Science, 2022,<br>15, 2154-2163. | 30.8 | 30        |
| 57 | Fabrication of Perovskite Solar Cells with Digital Control of Transparency by Inkjet Printing. ACS<br>Applied Materials & Interfaces, 2021, 13, 30524-30532.                                                         | 8.0  | 29        |
| 58 | Semitransparent Perovskite Solar Cells with > 13% Efficiency and 27% Transperancy Using Plasmonic Au Nanorods. ACS Applied Materials & Interfaces, 2022, 14, 11339-11349.                                            | 8.0  | 29        |
| 59 | Design and Development of Novel Linker for PbS Quantum Dots/TiO <sub>2</sub> Mesoscopic Solar cell. ACS Applied Materials & Interfaces, 2011, 3, 3264-3267.                                                          | 8.0  | 28        |
| 60 | New insights into exciton binding and relaxation from high time resolution ultrafast spectroscopy of CH3NH3PbI3and CH3NH3PbBr3films. Journal of Materials Chemistry A, 2016, 4, 3546-3553.                           | 10.3 | 28        |
| 61 | The Relationship between Chemical Flexibility and Nanoscale Charge Collection in Hybrid Halide<br>Perovskites. Advanced Functional Materials, 2018, 28, 1706995.                                                     | 14.9 | 28        |
| 62 | Cell refinement of CsPbBr <sub>3</sub> perovskite nanoparticles and thin films. Nanoscale Advances, 2019, 1, 147-153.                                                                                                | 4.6  | 28        |
| 63 | Fully functional semi-transparent perovskite solar cell fabricated in ambient air. Sustainable Energy and Fuels, 2017, 1, 2120-2127.                                                                                 | 4.9  | 27        |
| 64 | Electrical Characterization of Individual Cesium Lead Halide Perovskite Nanowires Using Conductive AFM. Advanced Materials, 2020, 32, e1907812.                                                                      | 21.0 | 23        |
| 65 | Hot dipping post treatment for improved efficiency in micro patterned semi-transparent perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 23787-23796.                                               | 10.3 | 21        |
| 66 | The effect of TiO <sub>2</sub> surface on the electron injection efficiency in PbS quantum dot solar cells: a first-principles study. Physical Chemistry Chemical Physics, 2015, 17, 6076-6086.                      | 2.8  | 20        |
| 67 | Hydroxyl Functional Groups in Two-Dimensional Dion–Jacobson Perovskite Solar Cells. ACS Energy<br>Letters, 2022, 7, 217-225.                                                                                         | 17.4 | 20        |
| 68 | Unusually Strong Biexciton Repulsion Detected in Quantum Confined CsPbBr <sub>3</sub><br>Nanocrystals with Two and Three Pulse Femtosecond Spectroscopy. ACS Nano, 2021, 15, 9039-9047.                              | 14.6 | 19        |
| 69 | Investigation of Interfacial Charge Separation at PbS QDs/(001) TiO <sub>2</sub> Nanosheets<br>Heterojunction Solar Cell. Particle and Particle Systems Characterization, 2015, 32, 483-488.                         | 2.3  | 17        |
| 70 | A mesoporous–planar hybrid architecture of methylammonium lead iodide perovskite based solar<br>cells. Journal of Materials Chemistry A, 2016, 4, 14423-14429.                                                       | 10.3 | 17        |
| 71 | Biasâ€Dependent Stability of Perovskite Solar Cells Studied Using Natural and Concentrated Sunlight.<br>Solar Rrl, 2020, 4, 1900335.                                                                                 | 5.8  | 17        |
| 72 | Affecting an Ultraâ€High Work Function of Silver. Angewandte Chemie - International Edition, 2020, 59,<br>4698-4704.                                                                                                 | 13.8 | 15        |

LIOZ ETGAR

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Evolution of Photovoltaic Performance in Fully Printable Mesoscopic Carbonâ€Based Perovskite Solar<br>Cells. Energy Technology, 2019, 7, 1900481.                                          | 3.8  | 14        |
| 74 | Two-dimensional or passivation treatment: the effect of hexylammonium post deposition treatment on 3D halide perovskite-based solar cells. Materials Advances, 2021, 2, 2617-2625.         | 5.4  | 14        |
| 75 | Methylammoniumâ€Mediated Evolution of Mixedâ€Organicâ€Cation Perovskite Thin Films: A Dynamic<br>Compositionâ€Tuning Process. Angewandte Chemie, 2017, 129, 7782-7786.                     | 2.0  | 12        |
| 76 | First evidence of macroscale single crystal ion exchange found in lead halide perovskites. EcoMat, 2020, 2, e12016.                                                                        | 11.9 | 12        |
| 77 | Optical and Magnetic Properties of Conjugate Structures of PbSe Quantum Dots and<br>γâ€Fe <sub>2</sub> O <sub>3</sub> Nanoparticles. ChemPhysChem, 2009, 10, 2235-2241.                    | 2.1  | 11        |
| 78 | Novel rubidium lead chloride nanocrystals: synthesis and characterization. Nano Futures, 2017, 1, 021002.                                                                                  | 2.2  | 11        |
| 79 | Fine-tuning of the metal work function by molecular doping. Chemical Communications, 2018, 54, 7203-7206.                                                                                  | 4.1  | 11        |
| 80 | Fully Inorganic Mixed Cation Lead Halide Perovskite Nanoparticles: A Study at the Atomic Level.<br>Chemistry of Materials, 2020, 32, 1467-1474.                                            | 6.7  | 11        |
| 81 | Photovoltaic Recovery of All Printable Mesoporousâ€Carbonâ€based Perovskite Solar Cells. Solar Rrl,<br>2021, 5, 2100028.                                                                   | 5.8  | 11        |
| 82 | Multimodal Approach towards Large Area Fully Semitransparent Perovskite Solar Module. Advanced<br>Energy Materials, 2021, 11, 2102276.                                                     | 19.5 | 11        |
| 83 | Reducing recombination in ZnO photoanodes for dye sensitised solar cells through simple chemical synthesis. Journal of Materials Chemistry, 2012, 22, 24463.                               | 6.7  | 9         |
| 84 | Critical Role of Removing Impurities in Nickel Oxide on Highâ€Efficiency and Longâ€Term Stability of<br>Inverted Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .                   | 2.0  | 9         |
| 85 | Structural and Quantitative Investigation of Perovskite Pore Filling in Mesoporous Metal Oxides.<br>Crystals, 2016, 6, 149.                                                                | 2.2  | 8         |
| 86 | Green energy by recoverable triple-oxide mesostructured perovskite photovoltaics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31010-31017. | 7.1  | 8         |
| 87 | Electrical and chemical properties of vacancy-ordered lead free layered double perovskite nanoparticles. Nanoscale, 2022, 14, 3487-3495.                                                   | 5.6  | 8         |
| 88 | Study of Electron Transport Layerâ€Free and Hole Transport Layerâ€Free Inverted Perovskite Solar Cells.<br>Solar Rrl, 2022, 6, 2100578.                                                    | 5.8  | 7         |
| 89 | Synthesis of water-soluble PbSe quantum dots. Journal of Materials Research, 2008, 23, 899-903.                                                                                            | 2.6  | 6         |
| 90 | Controlling the anisotropic magnetic dipolar interactions of PbSe self-assembled nanoparticles on<br>GaAs. Physical Chemistry Chemical Physics, 2009, 11, 7549.                            | 2.8  | 6         |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | A new approach to modelling Kelvin probe force microscopy of hetero-structures in the dark and under illumination. Optical and Quantum Electronics, 2018, 50, 1.                                      | 3.3  | 6         |
| 92  | Tuning the Optical Properties of Already Crystalized Hybrid Perovskite. Solar Rrl, 2019, 3, 1900128.                                                                                                  | 5.8  | 5         |
| 93  | The properties, photovoltaic performance and stability of visible to near-IR all inorganic perovskites.<br>Materials Advances, 2020, 1, 1920-1929.                                                    | 5.4  | 5         |
| 94  | Effect of Interfacial Engineering in Solidâ€6tate Nanostructured Sb <sub>2</sub> S <sub>3</sub><br>Heterojunction Solar Cells (Adv. Energy Mater. 1/2013). Advanced Energy Materials, 2013, 3, 28-28. | 19.5 | 4         |
| 95  | CsPbBr <sub>3</sub> and CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> promote visible-light photo-reactivity. Physical Chemistry Chemical Physics, 2018, 20, 16847-16852.                         | 2.8  | 4         |
| 96  | Indication of CsPbBr <sub>3</sub> inclusions in zero dimensional Cs <sub>4</sub> PbBr <sub>6</sub><br>perovskite single crystals by alkylammonium postâ€ŧreatment. Nano Select, 2021, 2, 83-89.       | 3.7  | 4         |
| 97  | Ruddlesden–Popper 2D Chiral Perovskiteâ€Based Solar Cells. Small Structures, 2022, 3, .                                                                                                               | 12.0 | 4         |
| 98  | Trajectory control of PbSe–γ-Fe2O3nanoplatforms under viscous flow and an external magnetic field.<br>Nanotechnology, 2010, 21, 175702.                                                               | 2.6  | 3         |
| 99  | Conductive molecularly doped gold films. Journal of Materials Chemistry C, 2016, 4, 11548-11556.                                                                                                      | 5.5  | 3         |
| 100 | Formation of Semiconducting Supramolecular Fullerene Aggregates in a Dipeptide Organogel.<br>Advanced Materials Technologies, 2020, 5, 1900829.                                                       | 5.8  | 3         |
| 101 | Solution-based low-temperature CsPbI <sub>3</sub> nanoparticle perovskite solar cells. Materials<br>Advances, 2022, 3, 1737-1746.                                                                     | 5.4  | 3         |
| 102 | Multifunctional Additive (Lâ€4â€Fluorophenylalanine) for Efficient and Stable Inverted Perovskite Solar<br>Cells. Solar Rrl, 0, , 2101101.                                                            | 5.8  | 3         |
| 103 | Ways to Improve the Performance of Tripleâ€Mesoscopic Holeâ€Conductorâ€Free Perovskiteâ€Based Solar<br>Cells. Solar Rrl, 2022, 6, .                                                                   | 5.8  | 3         |
| 104 | Energy Spotlight. ACS Energy Letters, 2021, 6, 3750-3752.                                                                                                                                             | 17.4 | 2         |
| 105 | Controlling the device functionality by solvent engineering, solar cell <i>versus</i> light emitting diode. Journal of Materials Chemistry C, 2022, 10, 10037-10046.                                  | 5.5  | 2         |
| 106 | A Solution-Processed Tetra-Alkoxylated Zinc Phthalocyanine as Hole Transporting Material for<br>Emerging Photovoltaic Technologies. International Journal of Photoenergy, 2018, 2018, 1-9.            | 2.5  | 1         |
| 107 | Energy Spotlight. ACS Energy Letters, 2021, 6, 2003-2005.                                                                                                                                             | 17.4 | 1         |
| 108 | Understanding the distribution of chlorine in perovskite solar cells via x-ray fluorescence microscopyl. , 2016, , .                                                                                  |      | 0         |

LIOZ ETGAR

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Monitoring hot exciton dissociation in hybrid lead halide perovskite films with sub-10 fs pulses. EPJ<br>Web of Conferences, 2019, 205, 06019.                              | 0.3 | 0         |
| 110 | Affecting an Ultraâ€High Work Function of Silver. Angewandte Chemie, 2020, 132, 4728-4734.                                                                                  | 2.0 | 0         |
| 111 | Targeting of PbSe- <i>γ</i> -Fe <sub>2</sub> O <sub>3</sub><br>Nanoplatforms by External Magnetic Field Under Viscous Flow Conditions. Sensor Letters, 2010, 8,<br>383-386. | 0.4 | 0         |
| 112 | Two Dimensional organic-inorganic perovskite from nanostructures to solar cells. , 0, , .                                                                                   |     | 0         |
| 113 | Stability of organic-inorganic perovskite photovoltaic materials and devices under natural- and concentrated- sunlight. , 0, , .                                            |     | 0         |
| 114 | Low Dimensional Perovskite: Stability, Solar Cells and Nanostructures. , 0, , .                                                                                             |     | 0         |
| 115 | Gauging Photorefractive Effects on Transient Absorption in Lead Iodide Perovskite Thin Films by Comparison to Nanocrystals , 0, , .                                         |     | 0         |
| 116 | Bias-Dependent Stability of Perovskite Solar Cells: Degradation Mechanisms Reconsidered. , 0, , .                                                                           |     | 0         |
| 117 | Hot Dipping Post Treatment for Improved Efficiency in Micro Patterned Semitransparent Perovskite<br>Solar Cell. , 0, , .                                                    |     | 0         |
| 118 | Halide Exchange in Solid State Mixed Cation Hybrid Perovskite. , 0, , .                                                                                                     |     | 0         |
| 119 | Ultrafast Investigation of Lead Halide Perovskite Nanocrystals and Thin Films. , 0, , .                                                                                     |     | 0         |
| 120 | Holistic Approach Towards Fully Semi-transparent 21 cm2 Perovskite Solar Module with 9.5%<br>Efficiency. , 0, , .                                                           |     | 0         |
| 121 | Bifacial Fully printable low dimensional perovskite solar cells. , 0, , .                                                                                                   |     | 0         |
| 122 | Formamidinium Halide Perovskite and Carbon Nitride Thin Films Enhance Photoreactivity under Visible<br>Light Excitation. Journal of Physical Chemistry A, 0, , .            | 2.5 | 0         |