Fabiana Avila Carneiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5546604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spheroids and organoids as humanized 3D scaffoldâ€free engineered tissues for SARSâ€CoVâ€2 viral infection and drug screening. Artificial Organs, 2021, 45, 548-558.	1.0	21
2	Intracellular host cell membrane remodelling induced by SARSâ€CoVâ€2 infection <i>in vitro</i> . Biology of the Cell, 2021, 113, 281-293.	0.7	14
3	Ultrastructural analysis of SARS-CoV-2 interactions with the host cell via high resolution scanning electron microscopy. Scientific Reports, 2020, 10, 16099.	1.6	81
4	Co-protoporphyrin IX and Sn-protoporphyrin IX inactivate Zika, Chikungunya and other arboviruses by targeting the viral envelope. Scientific Reports, 2018, 8, 9805.	1.6	45
5	Development of standard methods for Zika virus propagation, titration, and purification. Journal of Virological Methods, 2017, 246, 65-74.	1.0	58
6	Dengue Virus Capsid Protein Binding to Hepatic Lipid Droplets (LD) Is Potassium Ion Dependent and Is Mediated by LD Surface Proteins. Journal of Virology, 2012, 86, 2096-2108.	1.5	115
7	The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochemical Journal, 2012, 444, 405-415.	1.7	83
8	Interaction of the Dengue Virus Fusion Peptide with Membranes Assessed by NMR: The Essential Role of the Envelope Protein Trp101 for Membrane Fusion. Journal of Molecular Biology, 2009, 392, 736-746.	2.0	45
9	Interaction between dengue virus fusion peptide and lipid bilayers depends on peptide clustering. Molecular Membrane Biology, 2008, 25, 128-138.	2.0	30
10	Inactivation of vesicular stomatitis virus through inhibition of membrane fusion by chemical modification of the viral glycoprotein. Antiviral Research, 2007, 73, 31-39.	1.9	10
11	Charged residues are involved in membrane fusion mediated by a hydrophilic peptide located in vesicular stomatitis virus G protein. Molecular Membrane Biology, 2006, 23, 396-406.	2.0	7
12	Probing the interaction between vesicular stomatitis virus and phosphatidylserine. European Biophysics Journal, 2006, 35, 145-154.	1.2	43
13	Membrane Fusion Induced by Vesicular Stomatitis Virus Depends on Histidine Protonation. Journal of Biological Chemistry, 2003, 278, 13789-13794.	1.6	70
14	Membrane Recognition by Vesicular Stomatitis Virus Involves Enthalpy-Driven Protein-Lipid Interactions. Journal of Virology, 2002, 76, 3756-3764.	1.5	90
15	Low pH-induced Conformational Changes in Vesicular Stomatitis Virus Glycoprotein Involve Dramatic Structure Reorganization. Journal of Biological Chemistry, 2001, 276, 62-67.	1.6	53