

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5546570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. Chinese Chemical Letters, 2023, 34, 107592.	9.0	35
2	Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 35-52.	9.1	17
3	The relief of hypoxic microenvironment using an O2 self-sufficient fluorinated nanoplatform for enhanced photodynamic eradication of bacterial biofilms. Nano Research, 2022, 15, 1636-1644.	10.4	23
4	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2020. Chinese Chemical Letters, 2022, 33, 1650-1658.	9.0	47
5	Polymeric Nanoplatforms for the Delivery of Antibacterial Agents. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	7
6	Verteporfin-loaded supramolecular micelles for enhanced cisplatin-based chemotherapy <i>via</i> autophagy inhibition. Journal of Materials Chemistry B, 2022, 10, 2670-2679.	5.8	9
7	<scp>pH</scp> â€sensitive polyion nanocomplexes for antimicrobial peptide delivery. Journal of Polymer Science, 2022, 60, 2289-2297.	3.8	3
8	Fabrication of programmed photosensitizer-conjugated nanoassemblies by dual supramolecular self-assembly for photodynamic therapy of orthotopic hepatoma. Chemical Engineering Journal, 2022, 435, 134930.	12.7	8
9	Stimuliâ€responsive nanoplatforms for antibacterial applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1775.	6.1	30
10	Oxygen-economizing liposomes for synergistic photodynamic and starvation therapy. Colloids and Interface Science Communications, 2022, 47, 100598.	4.1	4
11	Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-II window. Biomaterials, 2022, 283, 121476.	11.4	48
12	Facile Synthesis of Zn ²⁺ â€Based Hybrid Nanoparticles as a New Paradigm for the Treatment of Internal Bacterial Infections. Advanced Functional Materials, 2022, 32, .	14.9	17
13	Antiâ€Oxidative and Antiâ€Inflammatory Micelles: Break the Dry Eye Vicious Cycle. Advanced Science, 2022, 9, e2200435.	11.2	40
14	A NIR-II emissive polymer AlEgen for imaging-guided photothermal elimination of bacterial infection. Biomaterials, 2022, 286, 121579.	11.4	26
15	Cancer-Associated Fibroblast-Targeted Delivery of Captopril to Overcome Penetration Obstacles for Enhanced Pancreatic Cancer Therapy. ACS Applied Bio Materials, 2022, 5, 3544-3553.	4.6	7
16	An ROS-Responsive Antioxidative Macromolecular Prodrug of Caffeate for Uveitis Treatment. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1101-1109.	3.8	6
17	Rapid build-up of high-throughput screening microarrays with biochemistry gradients <i>via</i> light-induced thiol–ene "click―chemistry. Journal of Materials Chemistry B, 2021, 9, 3032-3037.	5.8	2
18	Bacterial infection microenvironment sensitive prodrug micelles with enhanced photodynamic activities for infection control. Colloids and Interface Science Communications, 2021, 40, 100354.	4.1	33

#	Article	IF	CITATIONS
19	Tailoring Supramolecular Prodrug Nanoassemblies for Reactive Nitrogen Species-Potentiated Chemotherapy of Liver Cancer. ACS Nano, 2021, 15, 8663-8675.	14.6	87
20	Antimicrobial nanomedicine for ocular bacterial and fungal infection. Drug Delivery and Translational Research, 2021, 11, 1352-1375.	5.8	26
21	Gradient Porous Structure Templated by Breath Figure Method. Langmuir, 2021, 37, 6016-6021.	3.5	4
22	Aggregationâ€Induced Emissionâ€Based Platforms for the Treatment of Bacteria, Fungi, and Viruses. Advanced Healthcare Materials, 2021, 10, e2100736.	7.6	25
23	Chlorin e6 (Ce6)-loaded supramolecular polypeptide micelles with enhanced photodynamic therapy effect against Pseudomonas aeruginosa. Chemical Engineering Journal, 2021, 417, 129334.	12.7	34
24	Mixed-charge modification as a robust method to realize the antiviral ability of gold nanoparticles in a high protein environment. Nanoscale, 2021, 13, 19857-19863.	5.6	7
25	Surface Charge Switchable Supramolecular Nanocarriers for Nitric Oxide Synergistic Photodynamic Eradication of Biofilms. ACS Nano, 2020, 14, 347-359.	14.6	321
26	Polymyxin Bâ€Polysaccharide Polyion Nanocomplex with Improved Biocompatibility and Unaffected Antibacterial Activity for Acute Lung Infection Management. Advanced Healthcare Materials, 2020, 9, e1901542.	7.6	45
27	Fabrication of Mixed-Charge Polypeptide Coating for Enhanced Hemocompatibility and Anti-Infective Effect. ACS Applied Materials & Interfaces, 2020, 12, 2999-3010.	8.0	53
28	Biofilm microenvironment activated supramolecular nanoparticles for enhanced photodynamic therapy of bacterial keratitis. Journal of Controlled Release, 2020, 327, 676-687.	9.9	91
29	New Morphogenetic Strategy Inspired by the Viscoelasticity of Polymers. ACS Applied Materials & Interfaces, 2020, 12, 36620-36627.	8.0	2
30	Polymer coated nanodiamonds as gemcitabine prodrug with enzymatic sensitivity for pancreatic cancer treatment. Progress in Natural Science: Materials International, 2020, 30, 711-717.	4.4	10
31	3-Bromopyruvate-Conjugated Nanoplatform-Induced Pro-Death Autophagy for Enhanced Photodynamic Therapy against Hypoxic Tumor. ACS Nano, 2020, 14, 9711-9727.	14.6	105
32	Emerging nanobiomaterials against bacterial infections in postantibiotic era. View, 2020, 1, 20200014.	5.3	37
33	Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomaterials Science, 2020, 8, 6825-6839.	5.4	68
34	Macromolecular Platform with Super-Cation Enhanced Trans-Cornea Infiltration for Noninvasive Nitric Oxide Delivery in Ocular Therapy. ACS Nano, 2020, 14, 16929-16938.	14.6	20
35	ATP Suppression by pHâ€Activated Mitochondriaâ€Targeted Delivery of Nitric Oxide Nanoplatform for Drug Resistance Reversal and Metastasis Inhibition. Small, 2020, 16, e2001747.	10.0	95
36	Relief of Biofilm Hypoxia Using an Oxygen Nanocarrier: A New Paradigm for Enhanced Antibiotic Therapy. Advanced Science, 2020, 7, 2000398.	11.2	80

#	Article	IF	CITATIONS
37	Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Research, 2020, 13, 2340-2350.	10.4	62
38	Metformin-Induced Stromal Depletion to Enhance the Penetration of Gemcitabine-Loaded Magnetic Nanoparticles for Pancreatic Cancer Targeted Therapy. Journal of the American Chemical Society, 2020, 142, 4944-4954.	13.7	153
39	Nitric oxide-induced stromal depletion for improved nanoparticle penetration in pancreatic cancer treatment. Biomaterials, 2020, 246, 119999.	11.4	75
40	Structure-Switchable DNA Programmed Disassembly of Nanoparticles for Smart Size Tunability and Cancer-Specific Drug Release. ACS Applied Materials & Interfaces, 2020, 12, 22560-22571.	8.0	19
41	Supramolecular Aggregation-Induced Emission Nanodots with Programmed Tumor Microenvironment Responsiveness for Image-Guided Orthotopic Pancreatic Cancer Therapy. ACS Nano, 2020, 14, 5121-5134.	14.6	98
42	Size and Charge Adaptive Clustered Nanoparticles Targeting the Biofilm Microenvironment for Chronic Lung Infection Management. ACS Nano, 2020, 14, 5686-5699.	14.6	199
43	Rapid Buildup Arrays with Orthogonal Biochemistry Gradients via Light-Induced Thiol–Ene "Click― Chemistry for High-Throughput Screening of Peptide Combinations. ACS Applied Materials & Interfaces, 2020, 12, 20243-20252.	8.0	11
44	Mixed-Charged Zwitterionic Polymeric Micelles for Tumor Acidic Environment Responsive Intracellular Drug Delivery. Langmuir, 2019, 35, 1242-1248.	3.5	25
45	Glutathione Responsive β-Cyclodextrin Conjugated S-Nitrothiols as a Carrier for Intracellular Delivery of Nitric Oxide. Bioconjugate Chemistry, 2019, 30, 583-591.	3.6	12
46	Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake. ACS Nano, 2019, 13, 954-977.	14.6	156
47	mRNA Guided Intracellular Self-Assembly of DNA–Gold Nanoparticle Conjugates as a Precise Trigger to Up-Regulate Cell Apoptosis and Activate Photothermal Therapy. Bioconjugate Chemistry, 2019, 30, 1763-1772.	3.6	17
48	One-step preparation of reduction-responsive cross-linked gemcitabine prodrug micelles for intracellular drug delivery. Colloids and Surfaces B: Biointerfaces, 2019, 181, 94-101.	5.0	16
49	Zwitterionic Reduction-Activated Supramolecular Prodrug Nanocarriers for Photodynamic Ablation of Cancer Cells. Langmuir, 2019, 35, 1919-1926.	3.5	12
50	Bacteriaâ€Targeted Supramolecular Photosensitizer Delivery Vehicles for Photodynamic Ablation Against Biofilms. Macromolecular Rapid Communications, 2019, 40, e1800763.	3.9	49
51	Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer. ACS Applied Materials & Interfaces, 2018, 10, 10428-10436.	8.0	70
52	Hemoglobin as a Smart pH-Sensitive Nanocarrier To Achieve Aggregation Enhanced Tumor Retention. Biomacromolecules, 2018, 19, 2007-2013.	5.4	41
53	Zwitterionic stealth peptide-protected gold nanoparticles enable long circulation without the accelerated blood clearance phenomenon. Biomaterials Science, 2018, 6, 200-206.	5.4	48
54	Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation. Biomaterials, 2018, 187, 55-65.	11.4	191

#	Article	IF	CITATIONS
55	Different Geometric Information Integrated within a Single Polydopamine Pattern to Yield Dual Shape Transformations. Macromolecular Materials and Engineering, 2018, 303, 1800319.	3.6	3
56	Gas Therapy: An Emerging "Green―Strategy for Anticancer Therapeutics. Advanced Therapeutics, 2018, 1, 1800084.	3.2	43
57	Let There be Light: Polymeric Micelles with Upper Critical Solution Temperature as Lightâ€Triggered Heat Nanogenerators for Combating Drugâ€Resistant Cancer. Small, 2018, 14, e1802420.	10.0	63
58	Dual Enzymatic Reaction-Assisted Gemcitabine Delivery Systems for Programmed Pancreatic Cancer Therapy. ACS Nano, 2017, 11, 1281-1291.	14.6	160
59	Design and Proof of Programmed 5-Aminolevulinic Acid Prodrug Nanocarriers for Targeted Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 14596-14605.	8.0	66
60	On-Demand Shape Recovery Kinetics Modulation with a Wide Regulation Range and Spatially Heterogeneous Shape Recovery Rate. Journal of Physical Chemistry C, 2017, 121, 11144-11150.	3.1	5
61	Polyamino acid-based gemcitabine nanocarriers for targeted intracellular drug delivery. Polymer Chemistry, 2017, 8, 2490-2498.	3.9	36
62	Methemoglobin as a redox-responsive nanocarrier to trigger the in situ anticancer ability of artemisinin. NPG Asia Materials, 2017, 9, e423-e423.	7.9	4
63	Enzyme-sensitive gemcitabine conjugated albumin nanoparticles as a versatile theranostic nanoplatform for pancreatic cancer treatment. Journal of Colloid and Interface Science, 2017, 507, 217-224.	9.4	48
64	A cascade enzymatic reaction activatable gemcitabine prodrug with an AIE-based intracellular light-up apoptotic probe for in situ self-therapeutic monitoring. Chemical Communications, 2017, 53, 9214-9217.	4.1	41
65	Surface-Adaptive Gold Nanoparticles with Effective Adherence and Enhanced Photothermal Ablation of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm. ACS Nano, 2017, 11, 9330-9339.	14.6	462
66	Zwitterionic stealth peptide-capped 5-aminolevulinic acid prodrug nanoparticles for targeted photodynamic therapy. Journal of Colloid and Interface Science, 2017, 485, 251-259.	9.4	40
67	Intracellular Dual Fluorescent Lightup Bioprobes for Image-Guided Photodynamic Cancer Therapy. Small, 2016, 12, 3870-3878.	10.0	31
68	Photodynamic Theranostics: Glutathione Activatable Photosensitizer onjugated Pseudopolyrotaxane Nanocarriers for Photodynamic Theranostics (Small 45/2016). Small, 2016, 12, 6178-6178.	10.0	4
69	Zwitterionic supramolecular prodrug nanoparticles based on host-guest interactions for intracellular drug delivery. Polymer, 2016, 97, 449-455.	3.8	22
70	A "writing―strategy for shape transition with infinitely adjustable shaping sequences and in situ tunable 3D structures. Materials Horizons, 2016, 3, 581-587.	12.2	28
71	Zwitterionic Phosphorylcholine–TPE Conjugate for pH-Responsive Drug Delivery and AIE Active Imaging. ACS Applied Materials & Interfaces, 2016, 8, 21185-21192.	8.0	105
72	Programmed photosensitizer conjugated supramolecular nanocarriers with dual targeting ability for enhanced photodynamic therapy. Chemical Communications, 2016, 52, 11935-11938.	4.1	29

#	Article	IF	CITATIONS
73	Glutathione Activatable Photosensitizer onjugated Pseudopolyrotaxane Nanocarriers for Photodynamic Theranostics. Small, 2016, 12, 6223-6232.	10.0	65
74	Theranostic hyaluronic acid prodrug micelles with aggregation-induced emission characteristics for targeted drug delivery. Science China Chemistry, 2016, 59, 1609-1615.	8.2	35
75	pH―and NIR Lightâ€Responsive Polymeric Prodrug Micelles for Hyperthermiaâ€Assisted Siteâ€Specific Chemotherapy to Reverse Drug Resistance in Cancer Treatment. Small, 2016, 12, 2731-2740.	10.0	102
76	Biomimetic drug nanocarriers prepared by miniemulsion polymerization for near-infrared imaging and photothermal therapy. Polymer, 2016, 82, 255-261.	3.8	24
77	Dual pH-responsive 5-aminolevulinic acid pseudopolyrotaxane prodrug micelles for enhanced photodynamic therapy. Chemical Communications, 2016, 52, 3966-3969.	4.1	38
78	IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer. ACS Applied Materials & Interfaces, 2016, 8, 6852-6858.	8.0	111
79	Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy. Nanoscale, 2016, 8, 283-291.	5.6	82
80	Intracellular host–guest assembly of gold nanoparticles triggered by glutathione. Chemical Communications, 2016, 52, 582-585.	4.1	31
81	Camptothecin-conjugated biodegradable prodrug micelles for theranostic near-infrared fluorescent imaging and intracellular drug release. Journal of Controlled Release, 2015, 213, e37.	9.9	0
82	Light and pH dual responsive polyion complex micelles for efficient protein delivery. Journal of Controlled Release, 2015, 213, e90-e91.	9.9	0
83	Doxorubicin conjugated phospholipid prodrugs as smart nanomedicine platforms for cancer therapy. Journal of Materials Chemistry B, 2015, 3, 3297-3305.	5.8	60
84	Design and fabrication of functional polycaprolactone. E-Polymers, 2015, 15, 3-13.	3.0	40
85	Light cross-linkable and pH de-cross-linkable drug nanocarriers for intracellular drug delivery. Polymer Chemistry, 2015, 6, 2069-2075.	3.9	24
86	Pillar[5]arene based supramolecular prodrug micelles with pH induced aggregate behavior for intracellular drug delivery. Chemical Communications, 2015, 51, 2999-3002.	4.1	43
87	The rational design of a gemcitabine prodrug with AIE-based intracellular light-up characteristics for selective suppression of pancreatic cancer cells. Chemical Communications, 2015, 51, 17435-17438.	4.1	68
88	Zwitterionic pendant polymer and doxorubicin decorated β -cyclodextrin guest–host micelles for efficient drug delivery. Journal of Controlled Release, 2015, 213, e129-e130.	9.9	0
89	pH-Responsive supramolecular prodrug micelles based on cucurbit[8]uril for intracellular drug delivery. Journal of Controlled Release, 2015, 213, e134-e135.	9.9	1
90	Biomimic pH/reduction dual-sensitive reversibly cross-linked hyaluronic acid prodrug micelles for targeted intracellular drug delivery. Polymer, 2015, 76, 237-244.	3.8	30

#	Article	IF	CITATIONS
91	Oneâ€6tep Preparation of Reductionâ€Responsive Biodegradable Polymers as Efficient Intracellular Drug Delivery Platforms. Macromolecular Chemistry and Physics, 2014, 215, 1848-1854.	2.2	19
92	Supramolecular Micelles and Reverse Micelles Based on Cyclodextrin Polyrotaxanes. Chinese Journal of Chemistry, 2014, 32, 73-77.	4.9	6
93	Charge-Conversional and pH-Sensitive PEGylated Polymeric Micelles as Efficient Nanocarriers for Drug Delivery. Macromolecular Bioscience, 2014, 14, 1280-1290.	4.1	32
94	Light and pH Dualâ€Degradable Triblock Copolymer Micelles for Controlled Intracellular Drug Release. Macromolecular Rapid Communications, 2014, 35, 1372-1378.	3.9	53
95	Zwitterionic drug nanocarriers: A biomimetic strategy for drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 124, 80-86.	5.0	128
96	"Mixed-charge Self-Assembled Monolayers―as A Facile Method to Design pH-induced Aggregation of Large Gold Nanoparticles for Near-Infrared Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 2014, 6, 18930-18937.	8.0	49
97	Biocompatible and biodegradable supramolecular assemblies formed with cucurbit[8]uril as a smart platform for reduction-triggered release of doxorubicin. Polymer Chemistry, 2014, 5, 1843.	3.9	23
98	Functional 2-methylene-1,3-dioxepane terpolymer: a versatile platform to construct biodegradable polymeric prodrugs for intracellular drug delivery. Polymer Chemistry, 2014, 5, 4061-4068.	3.9	27
99	A biomimic pH-sensitive polymeric prodrug based on polycarbonate for intracellular drug delivery. Polymer Chemistry, 2014, 5, 854-861.	3.9	71
100	Mixedâ€Charge Nanoparticles for Long Circulation, Low Reticuloendothelial System Clearance, and High Tumor Accumulation. Advanced Healthcare Materials, 2014, 3, 1439-1447.	7.6	77
101	Surface Tailoring of Nanoparticles via Mixedâ€Charge Monolayers and Their Biomedical Applications. Small, 2014, 10, 4230-4242.	10.0	47
102	pH and hydrogen peroxide dual responsive supramolecular prodrug system for controlled release of bioactive molecules. Colloids and Surfaces B: Biointerfaces, 2014, 121, 189-195.	5.0	34
103	Light-Responsive Polyion Complex Micelles with Switchable Surface Charge for Efficient Protein Delivery. ACS Macro Letters, 2014, 3, 679-683.	4.8	37
104	Template Assisted Change in Morphology from Particles to Nanofibers by Sideâ€byâ€Side Electrospinning of Block Copolymers. Macromolecular Materials and Engineering, 2014, 299, 1298-1305.	3.6	16
105	pH-responsive and biodegradable polymeric micelles based on poly(\hat{l}^2 -amino) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50	1 <u>82</u> Td (est
106	Enhanced Retention and Cellular Uptake of Nanoparticles in Tumors by Controlling Their Aggregation Behavior. ACS Nano, 2013, 7, 6244-6257.	14.6	309
107	Biomimetic pseudopolyrotaxane prodrug micelles with high drug content for intracellular drug delivery. Chemical Communications, 2013, 49, 7123.	4.1	57
108	Surface and Size Effects on Cell Interaction of Gold Nanoparticles with Both Phagocytic and Nonphagocytic Cells. Langmuir, 2013, 29, 9138-9148.	3.5	183

#	Article	IF	CITATIONS
109	Selfâ€ <scp>A</scp> ssembly of Nearâ€ <scp>M</scp> onodisperse Redoxâ€ <scp>S</scp> ensitive Micelles from Cholesterolâ€ <scp>C</scp> onjugated Biomimetic Copolymers. Macromolecular Bioscience, 2013, 13, 1084-1091.	4.1	27
110	Bioinspired phospholipid polymer prodrug as a pH-responsive drug delivery system for cancer therapy. Polymer Chemistry, 2013, 4, 2004.	3.9	63
111	Small and Stable Phosphorylcholine Zwitterionic Quantum Dots for Weak Nonspecific Phagocytosis and Effective Tat Peptide Functionalization. Advanced Healthcare Materials, 2013, 2, 352-360.	7.6	25
112	Novel amphiphilic, biodegradable, biocompatible, cross-linkable copolymers: synthesis, characterization and drug delivery applications. Polymer Chemistry, 2012, 3, 2785.	3.9	44
113	Minimizing nonspecific phagocytic uptake of biocompatible gold nanoparticles with mixed charged zwitterionic surface modification. Journal of Materials Chemistry, 2012, 22, 1916-1927.	6.7	58
114	Mixed Charged Zwitterionic Self-Assembled Monolayers as a Facile Way to Stabilize Large Gold Nanoparticles. Langmuir, 2011, 27, 5242-5251.	3.5	78
115	Biocompatible vesicles based on PEO-b-PMPC∫α-cyclodextrin inclusion complexes for drug delivery. Soft Matter, 2011, 7, 662-669.	2.7	79
116	Selfâ€assembly and degradation of poly[(2â€methacryloyloxyethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 467 Td large compound micelles to vesicles. Polymer International, 2011, 60, 578-583.	(phospho 3.1	orylcholine)ât 12
117	Fabrication of core or shell reversibly photo cross-linked micelles and nanogels from double responsive water-soluble block copolymers. Polymer, 2010, 51, 1311-1319.	3.8	82
118	Micelles and reverse micelles with a photo and thermo doubleâ€responsive block copolymer. Journal of Polymer Science Part A, 2010, 48, 2855-2861.	2.3	91
119	Photo-responsive supramolecular self-assembly and disassembly of an azobenzene-containing block copolymer. Soft Matter, 2010, 6, 5589.	2.7	75
120	Zwitterionic phosphorylcholine as a better ligand for gold nanorods cell uptake and selective photothermal ablation of cancer cells. Chemical Communications, 2010, 46, 1479.	4.1	106
121	Poly(2â€(methacryloyloxy) ethyl phosphorylcholine)â€functionalized multiâ€walled carbon nanotubes: Preparation, characterization, solubility, and effects on blood coagulation. Journal of Applied Polymer Science, 2009, 113, 351-357.	2.6	16
122	Zwitterionic phosphorylcholine-protected water-soluble Ag nanoparticles. Science in China Series B: Chemistry, 2009, 52, 64-68.	0.8	19
123	Zwitterionic phosphorylcholine as a better ligand for stabilizing large biocompatible gold nanoparticles. Chemical Communications, 2008, , 3058.	4.1	73