Alessio Accardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5546391/publications.pdf

Version: 2024-02-01

44 3,367 26 39
papers citations h-index g-index

51 51 51 2424 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	TMEM16 scramblases thin the membrane to enable lipid scrambling. Nature Communications, 2022, 13, 2604.	5.8	22
2	Not so transport incompetent after all: Revisiting a CLC-7 mutant sheds new mechanistic light on lysosomal physiology. Journal of General Physiology, 2021, 153, .	0.9	1
3	A quantitative flux assay for the study of reconstituted Clâ^ channels and transporters. Methods in Enzymology, 2021, 652, 243-272.	0.4	2
4	Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins. Journal of Computational Chemistry, 2020, 41, 538-551.	1.5	15
5	What biologists want from their chloride reporters $\hat{a} \in \hat{a}$ a conversation between chemists and biologists. Journal of Cell Science, 2020, 133, .	1.2	27
6	Reconstitution of Proteoliposomes for Phospholipid Scrambling and Nonselective Channel Assays. Methods in Molecular Biology, 2020, 2127, 207-225.	0.4	10
7	Divergent Cl- and H+ pathways underlie transport coupling and gating in CLC exchangers and channels. ELife, 2020, 9, .	2.8	17
8	Structural Basis of Lipid Scrambling and Ion Conduction by TMEM16 Scramblases. FASEB Journal, 2020, 34, 1-1.	0.2	0
9	Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca2+-bound nhTMEM16. Nature Communications, 2019, 10, 4972.	5.8	23
10	The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nature Communications, 2019, 10, 3956.	5.8	101
11	Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase. ELife, 2019, 8, .	2.8	87
12	Known structures and unknown mechanisms of TMEM16 scramblases and channels. Journal of General Physiology, 2018, 150, 933-947.	0.9	92
13	Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase. Nature Communications, 2018, 9, 3251.	5. 8	70
14	Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7033-E7042.	3.3	49
15	Probing the conformation of a conserved glutamic acid within the Clâ^' pathway of a CLC H+/Clâ^' exchanger. Journal of General Physiology, 2017, 149, 523-529.	0.9	18
16	The nhTMEM16 Scramblase Is Also a Nonselective Ion Channel. Biophysical Journal, 2016, 111, 1919-1924.	0.2	70
17	Structure and gating of CLC channels and exchangers. Journal of Physiology, 2015, 593, 4129-4138.	1.3	65
18	A Proteoliposome-Based Efflux Assay to Determine Single-molecule Properties of Cl ⁻ Channels and Transporters. Journal of Visualized Experiments, 2015, , .	0.2	4

#	Article	IF	CITATIONS
19	Lipids link ion channels and cancer. Science, 2015, 349, 789-790.	6.0	31
20	TMEM16 Proteins: Unknown Structure and Confusing Functions. Journal of Molecular Biology, 2015, 427, 94-105.	2.0	115
21	Unveiling the Secret Lives of Glutamate Transporters: VGLUTs Engage in Multiple Transport Modes. Neuron, 2014, 84, 1110-1112.	3.8	1
22	Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure. Biochemical Journal, 2014, 464, 23-34.	1.7	41
23	Conformational changes required for H+/Clâ^ exchange mediated by a CLC transporter. Nature Structural and Molecular Biology, 2014, 21, 456-463.	3.6	76
24	Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nature Communications, 2013, 4, 2367.	5.8	202
25	Purified TMEM16A is sufficient to form Ca ²⁺ -activated Cl ^{â^'} channels. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19354-19359.	3.3	97
26	Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H+/Clâ ⁻ exchanger. Nature Structural and Molecular Biology, 2012, 19, 525-531.	3.6	71
27	3PT118 Functional in vitro reconstitution of Calcium-activated Chloride channel, TMEM16A/anoctamin1(The 50th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2012, 52, S160.	0.0	0
28	Proton Transport and Conformational Changes in H+/CL- Exchangers. Biophysical Journal, 2011, 100, 245a.	0.2	0
29	Proton block of the CLC-5 Clâ^'/H+ exchanger. Journal of General Physiology, 2010, 135, 653-659.	0.9	28
30	CLC channels and transporters: Proteins with borderline personalities. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1457-1464.	1.4	87
31	Proton Block of Human CLC-5 Cl-/H+ Exchanger. Biophysical Journal, 2010, 98, 320a.	0.2	0
32	Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nature Structural and Molecular Biology, 2009, 16, 1294-1301.	3.6	106
33	lon permeation through a Cl ^{â^'} -selective channel designed from a CLC Cl ^{â^'} /H ⁺ exchanger. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11194-11199.	3.3	97
34	To ATP or Not To ATP: This Is the Question. Journal of General Physiology, 2008, 131, 105-108.	0.9	4
35	Uncoupling and Turnover in a Clâ^'/H+ Exchange Transporter. Journal of General Physiology, 2007, 129, 317-329.	0.9	131
36	Synergism Between Halide Binding and Proton Transport in a CLC-type Exchanger. Journal of Molecular Biology, 2006, 362, 691-699.	2.0	103

#	Article	lF	CITATIONS
37	Structure and Function of CLC Chloride Channels and Transporters. Advances in Molecular and Cell Biology, 2006, , 59-82.	0.1	0
38	Separate Ion Pathways in a Clâ^'/H+ Exchanger. Journal of General Physiology, 2005, 126, 563-570.	0.9	203
39	lonic Currents Mediated by a Prokaryotic Homologue of CLC Clâ^' Channels. Journal of General Physiology, 2004, 123, 109-119.	0.9	138
40	Secondary active transport mediated by a prokaryotic homologue of CIC Cl- channels. Nature, 2004, 427, 803-807.	13.7	602
41	Conservation of Chloride Channel Structure Revealed by an Inhibitor Binding Site in ClC-1. Neuron, 2003, 38, 47-59.	3.8	161
42	Conformational Changes in the Pore of CLC-0. Journal of General Physiology, 2003, 122, 277-294.	0.9	82
43	A biological role for prokaryotic CIC chloride channels. Nature, 2002, 419, 715-718.	13.7	204
44	Fast and Slow Gating Relaxations in the Muscle Chloride Channel Clc-1. Journal of General Physiology, 2000, 116, 433-444.	0.9	101