Alessio Accardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5546391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secondary active transport mediated by a prokaryotic homologue of CIC CI- channels. Nature, 2004, 427, 803-807.	13.7	602
2	A biological role for prokaryotic ClC chloride channels. Nature, 2002, 419, 715-718.	13.7	204
3	Separate Ion Pathways in a Clâ^'/H+ Exchanger. Journal of General Physiology, 2005, 126, 563-570.	0.9	203
4	Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nature Communications, 2013, 4, 2367.	5.8	202
5	Conservation of Chloride Channel Structure Revealed by an Inhibitor Binding Site in ClC-1. Neuron, 2003, 38, 47-59.	3.8	161
6	Ionic Currents Mediated by a Prokaryotic Homologue of CLC Clâ^' Channels. Journal of General Physiology, 2004, 123, 109-119.	0.9	138
7	Uncoupling and Turnover in a Clâ^'/H+ Exchange Transporter. Journal of General Physiology, 2007, 129, 317-329.	0.9	131
8	TMEM16 Proteins: Unknown Structure and Confusing Functions. Journal of Molecular Biology, 2015, 427, 94-105.	2.0	115
9	Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nature Structural and Molecular Biology, 2009, 16, 1294-1301.	3.6	106
10	Synergism Between Halide Binding and Proton Transport in a CLC-type Exchanger. Journal of Molecular Biology, 2006, 362, 691-699.	2.0	103
11	Fast and Slow Gating Relaxations in the Muscle Chloride Channel Clc-1. Journal of General Physiology, 2000, 116, 433-444.	0.9	101
12	The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nature Communications, 2019, 10, 3956.	5.8	101
13	lon permeation through a Cl ^{â^'} -selective channel designed from a CLC Cl ^{â^'} /H ⁺ exchanger. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11194-11199.	3.3	97
14	Purified TMEM16A is sufficient to form Ca ²⁺ -activated Cl ^{â^'} channels. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19354-19359.	3.3	97
15	Known structures and unknown mechanisms of TMEM16 scramblases and channels. Journal of General Physiology, 2018, 150, 933-947.	0.9	92
16	CLC channels and transporters: Proteins with borderline personalities. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1457-1464.	1.4	87
17	Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase. ELife, 2019, 8, .	2.8	87
18	Conformational Changes in the Pore of CLC-0. Journal of General Physiology, 2003, 122, 277-294.	0.9	82

ALESSIO ACCARDI

#	Article	IF	CITATIONS
19	Conformational changes required for H+/Clâ^ exchange mediated by a CLC transporter. Nature Structural and Molecular Biology, 2014, 21, 456-463.	3.6	76
20	Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H+/Clâ^' exchanger. Nature Structural and Molecular Biology, 2012, 19, 525-531.	3.6	71
21	The nhTMEM16 Scramblase Is Also a Nonselective Ion Channel. Biophysical Journal, 2016, 111, 1919-1924.	0.2	70
22	Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase. Nature Communications, 2018, 9, 3251.	5.8	70
23	Structure and gating of CLC channels and exchangers. Journal of Physiology, 2015, 593, 4129-4138.	1.3	65
24	Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7033-E7042.	3.3	49
25	Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure. Biochemical Journal, 2014, 464, 23-34.	1.7	41
26	Lipids link ion channels and cancer. Science, 2015, 349, 789-790.	6.0	31
27	Proton block of the CLC-5 Clâ^'/H+ exchanger. Journal of General Physiology, 2010, 135, 653-659.	0.9	28
28	What biologists want from their chloride reporters – a conversation between chemists and biologists. Journal of Cell Science, 2020, 133, .	1.2	27
29	Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca2+-bound nhTMEM16. Nature Communications, 2019, 10, 4972.	5.8	23
30	TMEM16 scramblases thin the membrane to enable lipid scrambling. Nature Communications, 2022, 13, 2604.	5.8	22
31	Probing the conformation of a conserved glutamic acid within the Clâ^' pathway of a CLC H+/Clâ^' exchanger. Journal of General Physiology, 2017, 149, 523-529.	0.9	18
32	Divergent Cl- and H+ pathways underlie transport coupling and gating in CLC exchangers and channels. ELife, 2020, 9, .	2.8	17
33	Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins. Journal of Computational Chemistry, 2020, 41, 538-551.	1.5	15
34	Reconstitution of Proteoliposomes for Phospholipid Scrambling and Nonselective Channel Assays. Methods in Molecular Biology, 2020, 2127, 207-225.	0.4	10
35	To ATP or Not To ATP: This Is the Question. Journal of General Physiology, 2008, 131, 105-108.	0.9	4
36	A Proteoliposome-Based Efflux Assay to Determine Single-molecule Properties of Cl ⁻ Channels and Transporters. Journal of Visualized Experiments, 2015, , .	0.2	4

ALESSIO ACCARDI

#	Article	IF	CITATIONS
37	A quantitative flux assay for the study of reconstituted Clâ^' channels and transporters. Methods in Enzymology, 2021, 652, 243-272.	0.4	2
38	Unveiling the Secret Lives of Glutamate Transporters: VGLUTs Engage in Multiple Transport Modes. Neuron, 2014, 84, 1110-1112.	3.8	1
39	Not so transport incompetent after all: Revisiting a CLC-7 mutant sheds new mechanistic light on lysosomal physiology. Journal of General Physiology, 2021, 153, .	0.9	1
40	Structure and Function of CLC Chloride Channels and Transporters. Advances in Molecular and Cell Biology, 2006, , 59-82.	0.1	0
41	Proton Block of Human CLC-5 Cl-/H+ Exchanger. Biophysical Journal, 2010, 98, 320a.	0.2	0
42	Proton Transport and Conformational Changes in H+/CL- Exchangers. Biophysical Journal, 2011, 100, 245a.	0.2	0
43	3PT118 Functional in vitro reconstitution of Calcium-activated Chloride channel, TMEM16A/anoctamin1(The 50th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2012, 52, S160.	0.0	0
44	Structural Basis of Lipid Scrambling and Ion Conduction by TMEM16 Scramblases. FASEB Journal, 2020, 34, 1-1.	0.2	0