

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5546338/publications.pdf Version: 2024-02-01

32 papers	1,272 citations	687363 13 h-index	454955 30 g-index
32	32	32	1034
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 2007, 96, 205-224.	1.4	326
2	The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Research, 2012, 22, 360-376.	6.0	239
3	Post-collisional Ultrapotassic Mafic Magmatism in South Tibet: Products of Partial Melting of Pyroxenite in the Mantle Wedge Induced by Roll-back and Delamination of the Subducted Indian Continental Lithosphere Slab. Journal of Petrology, 2015, 56, 1365-1406.	2.8	134
4	Post-collisional, K-rich mafic magmatism in south Tibet: constraints on Indian slab-to-wedge transport processes and plateau uplift. Contributions To Mineralogy and Petrology, 2013, 165, 1311-1340.	3.1	128
5	The intraplate Changbaishan volcanic field (China/North Korea): A review on eruptive history, magma genesis, geodynamic significance, recent dynamics and potential hazards. Earth-Science Reviews, 2018, 187, 19-52.	9.1	67
6	Origin of Late Cenozoic Abaga–Dalinuoer basalts, eastern China: Implications for a mixed pyroxenite–peridotite source related with deep subduction of the Pacific slab. Gondwana Research, 2016, 37, 130-151.	6.0	48
7	India-Asia collision as a driver of atmospheric CO2 in the Cenozoic. Nature Communications, 2021, 12, 3891.	12.8	43
8	Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau. Nature Communications, 2021, 12, 4157.	12.8	42
9	Flux and genesis of CO 2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone. Journal of Asian Earth Sciences, 2017, 149, 110-123.	2.3	36
10	Stagnant subducted Pacific slab-derived CO2 emissions: Insights into magma degassing at Changbaishan volcano, NE China. Journal of Asian Earth Sciences, 2015, 106, 49-63.	2.3	34
11	The mass estimation of volatile emission during 1199–1200 AD eruption of Baitoushan volcano and its significance. Science in China Series D: Earth Sciences, 2002, 45, 530.	0.9	30
12	Effect of Mesozoic volcanic eruptions in the western Liaoning Province, China on paleoclimate and paleoenvironment. Science in China Series D: Earth Sciences, 2003, 46, 1261-1272.	0.9	28
13	CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China. Journal of Volcanology and Geothermal Research, 2018, 349, 146-162.	2.1	20
14	Metamorphic CO2 emissions from the southern Yadong-Gulu rift, Tibetan Plateau: Insights into deep carbon cycle in the India-Asia continental collision zone. Chemical Geology, 2021, 584, 120534.	3.3	14
15	Effect of gas emissions from Tianchi volcano (NE China) on environment and its potential volcanic hazards. Science in China Series D: Earth Sciences, 2006, 49, 304-310.	0.9	12
16	Tracking neolithic interactions in southeast China: Evidence from stone adze geochemistry. Geoarchaeology - an International Journal, 2005, 20, 765-776.	1.5	8
17	Effect of Miocene basaltic volcanism in Shanwang (Shandong Province, China) on environmental changes. Science in China Series D: Earth Sciences, 2007, 50, 1823-1827.	0.9	8
18	Chronological dating and tectonic implications of late Cenozoic volcanic rocks and lacustrine sequence in Oiyug Basin of southern Tibet. Science in China Series D: Earth Sciences, 2008, 51, 275-283.	0.9	8

ƣźŒ Éf-

#	Article	IF	CITATIONS
19	Reawaking of Tonga volcano. Innovation(China), 2022, 3, 100218.	9.1	8
20	Subducting Indian Lithosphere Controls the Deep Carbon Emission in Lhasa Terrane, Southern Tibet. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	6
21	Volcanogenic CO ₂ Degassing in the Songliao Continental Rift System, NE China. Geofluids, 2019, 2019, 1-14.	0.7	5
22	Geochemical constraints on the origin of late Cenozoic basalts in the Mt. Changbai volcanic field, NE China: evidence for crustal recycling. International Geology Review, 2020, 62, 2125-2145.	2.1	5
23	Carbon dioxide emission from monogenetic volcanoes in the Mt. Changbai volcanic field, NE China. International Geology Review, 2020, , 1-18.	2.1	5
24	Coexisting Late Cenozoic Potassic and Sodic Basalts in NE China: Role of Recycled Oceanic Components in Intraplate Magmatism and Mantle Heterogeneity. Lithosphere, 2020, 2020, .	1.4	4
25	Diffuse emission and transport of gaseous elemental mercury (GEM) in the Mapamyum geothermal system, Western Tibet (China). Journal of Volcanology and Geothermal Research, 2020, 397, 106825.	2.1	4
26	Magma evolution of the South China Sea basin from continental-margin rifting to oceanic crustal spreading: Constraints from In-situ trace elements and Sr isotope of minerals. Chemical Geology, 2022, 589, 120680.	3.3	3
27	The role of CO ₂ flushing in triggering the â€ [~] Millennium' eruption and recent unrests at Changbaishan volcano (China/North Korea). International Geology Review, 2023, 65, 706-719.	2.1	3
28	Sourcing the interaction networks in Neolithic coastal China: a geochemical study of the Tianluoshan stone adzes. Journal of Archaeological Science, 2011, 38, 1360-1370.	2.4	2
29	Volatile element isotopes of submarine hydrothermal mineral deposits in the Western Pacific. Geochemistry, Geophysics, Geosystems, 2016, 17, 2128-2142.	2.5	1
30	Scenario-Based Pyroclastic Density Current Invasion Maps at Poorly Known Volcanoes: A Case Study from Changbaishan (China/North Korea). Applied Sciences (Switzerland), 2020, 10, 2622.	2.5	1
31	Effect of volatiles erupted from Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China. Frontiers of Earth Science, 2008, 2, 236-239.	0.5	0
32	Geochemical and Mineral Characteristics of Jurassic Volcanic Rocks from ODP Sites 304, 1149, and 801: Implications for Magmatic Evolution in the Northwest Pacific. Acta Geologica Sinica, 2018, 92, 915-934.	1.4	0