Zhi-Ming Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5546081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmentally Friendly and Recyclable CuCl2-Mediated C–S Bond Coupling Strategy Using DMEDA as Ligand, Base, and Solvent. Synthesis, 2022, 54, 184-198.	2.3	6
2	Selective electrophilic di- and monofluorinations for the synthesis of 4-difluoromethyl and 4-fluoromethyl quinazolin(thi)ones by a Selectfluor-triggered multi-component reaction. Organic Chemistry Frontiers, 2022, 9, 1567-1573.	4.5	4
3	Synthesis of 2,2-Difluoro-3-hydroxy-1,4-diketones via an HFIP-Catalyzed Mukaiyama Aldol Reaction of Glyoxal Monohydrates with Difluoroenoxysilanes. Journal of Organic Chemistry, 2022, 87, 1144-1153.	3.2	16
4	Visible-light-induced novel cyclization of 2-(2-(arylethynyl)benzylidene)-malononitrile derivatives with 2,6-di(tert-butyl)-4-methylphenol to bridged spirocyclic compounds. Chinese Chemical Letters, 2022, 33, 5069-5073.	9.0	33
5	HFIP-catalyzed highly diastereoselective formal [4Â+Â2] cyclization to synthesize difluorinated multisubstituted chromans using difluoroenoxysilanes as C2 synthons. Chinese Chemical Letters, 2022, 33, 3007-3011.	9.0	21
6	HFIP-Promoted Selective Hydroxyalkylation of Aniline Derivatives with Arylglyoxal Hydrates. Journal of Organic Chemistry, 2022, 87, 6352-6361.	3.2	12
7	Direct benzylic C–H difluoroalkylation with difluoroenoxysilanes by transition metal-free photoredox catalysis. Organic Chemistry Frontiers, 2022, 9, 4569-4574.	4.5	4
8	A practical synthesis of α-bromo/iodo/chloroketones from olefins under visible-light irradiation conditions. Chinese Chemical Letters, 2021, 32, 429-432.	9.0	61
9	HFIP-catalyzed direct dehydroxydifluoroalkylation of benzylic and allylic alcohols with difluoroenoxysilanes. Chemical Communications, 2021, 57, 1050-1053.	4.1	33
10	Oxidant/Solvent-Controlled I ₂ -Catalyzed Domino Annulation for Selective Synthesis of 2-Aroylbenzothiazoles and 2-Arylbenzothiazoles under Metal-Free Conditions. Journal of Organic Chemistry, 2021, 86, 310-321.	3.2	15
11	<i>ortho</i> -Ethynyl group assisted regioselective and diastereoselective [2 + 2] cross-photocycloaddition of alkenes under photocatalyst-, additive-, and solvent-free conditions. Organic Chemistry Frontiers, 2021, 8, 5872-5887.	4.5	20
12	Organocatalyzed Cascade Aza-Michael/Aldol Reaction for Atroposelective Construction of 4-Naphthylquinoline-3-carbaldehydes. Journal of Organic Chemistry, 2021, 86, 4262-4273.	3.2	16
13	Sustainable Four-Component Annulation for the Synthesis of 2,3,4,6-Tetraarylpyridines. Journal of Organic Chemistry, 2021, 86, 3897-3906.	3.2	12
14	I ₂ -Catalyzed Three-Component Consecutive Reaction for the Synthesis of 3-Aroylimidazo[1,2- <i>a</i>]- <i>N</i> -Heterocycles. Journal of Organic Chemistry, 2021, 86, 6239-6246.	3.2	24
15	Reversal of Regioselectivity in Nucleophilic Difluoroalkylation of α,β-Enones Employing In Situ-Formed Sterically Encumbered Silylium Catalyst. Organic Letters, 2021, 23, 5859-5864.	4.6	24
16	HFIP-Catalyzed Difluoroalkylation of Propargylic Alcohols to Access Tetrasubstituted Difluoroalkyl Allenes. Organic Letters, 2021, 23, 7264-7269.	4.6	26
17	Expeditious Approach to Indoloquinazolinones via Double Annulations of o-Aminoacetophenones and Isocyanates. Journal of Organic Chemistry, 2021, 86, 1448-1455.	3.2	9
18	Cascade Cyclization of Azadienes with Difluoroenoxysilanes: A One-Pot Formal [4 + 2] Approach to Fluorinated Polyfused Heterocycles. Organic Letters, 2021, 23, 9526-9532.	4.6	21

ZHI-MING WANG

#	Article	IF	CITATIONS
19	Palladium-Catalyzed [4+2] Annulation of Aryl and Alkenyl Carboxamides with 1,3-Dienes via C–H Functionalization: Synthesis of 3,4-Dihydroisoquinolones and 5,6-Dihydropyridinones. Synthesis, 2020, 52, 1253-1265.	2.3	19
20	Vinylogous Elimination/C–H Functionalization/Allylation Cascade Reaction of Allenoate Adducts: Synthesis of Ring-Fused Dihydropyridinones. Organic Letters, 2020, 22, 8313-8319.	4.6	8
21	Synthesis of 1,2-dihydro-1,3,5-triazine derivatives <i>via</i> Cu(<scp>ii</scp>)-catalyzed C(sp ³)–H activation of <i>N</i> , <i>N</i> -dimethylethanolamine with amidines. Chemical Communications, 2020, 56, 10946-10949.	4.1	18
22	Palladium-Catalyzed Tandem Dehydrogenative [4 + 2] Annulation of Terminal Olefins with N-Sulfonyl Amides via C–H Activations. Organic Letters, 2020, 22, 3229-3233.	4.6	17
23	[3,3]-Sigmatropic Rearrangement/Haller–Bauer Reaction of Aryl Sulfoxides and Selenoxides with Difluoroenoxysilanes: Access to CF ₂ H-Containing Chalcogenides. Organic Letters, 2020, 22, 1164-1168.	4.6	21
24	Visibleâ€Lightâ€Induced Tandem Cyclization of Alkynoates and Phenylacetylenes to Naphtho[2,1â€ <i>c</i>]coumarins. Asian Journal of Organic Chemistry, 2019, 8, 1448-1457.	2.7	6
25	Visibleâ€Lightâ€Induced Alkoxylation of Quinoxalinâ€2(1 <i>H</i>)â€ones with Alcohols for the Synthesis of Heteroaryl Ethers. Advanced Synthesis and Catalysis, 2019, 361, 5363-5370.	4.3	45
26	Asymmetric Palladium-Catalyzed C–H Functionalization Cascade for Synthesis of Chiral 3,4-Dihydroisoquinolones. Journal of Organic Chemistry, 2019, 84, 12835-12847.	3.2	29
27	Recent development on the [5+2] cycloadditions and their application in natural product synthesis. Chemical Communications, 2019, 55, 1859-1878.	4.1	65
28	Palladium-catalyzed direct C2-arylation of azoles with aromatic triazenes. Organic and Biomolecular Chemistry, 2019, 17, 9209-9216.	2.8	20
29	An intramolecular Heck reaction of enol ethers involving β-alkoxyl elimination followed by the β-hydride elimination process: access to (<i>Z</i>)- <i>ortho</i> -formyl/keto-cinnamates. Chemical Communications, 2019, 55, 14422-14425.	4.1	3
30	Vinylogous Elimination/Heck Coupling/Allylation Domino Reactions: Access to 2-Substituted 2,3-Dihydrobenzofurans and Indolines. Journal of Organic Chemistry, 2018, 83, 2592-2600.	3.2	15
31	An elimination/Heck coupling/allylation cascade reaction: synthesis of 2,3-dihydrobenzofurans from allenoate adducts. Chemical Communications, 2018, 54, 1213-1216.	4.1	15
32	Catalytic Enantioselective Synthesis of Guvacine Derivatives through [4 + 2] Annulations of Imines with α-Methylallenoates. Organic Letters, 2018, 20, 6089-6093.	4.6	28
33	[4 + 2] Annulation of 3-Nitroindoles with Alkylidene Malononitriles: Entry to Substituted Carbazol-4-amine Derivatives. Journal of Organic Chemistry, 2018, 83, 12568-12574.	3.2	33
34	[3,3]-Sigmatropic rearrangement of allenic alcohols: stereoselective synthesis of 1,3-diene-2-ol sulfonates. Organic and Biomolecular Chemistry, 2017, 15, 4014-4021.	2.8	6
35	Fluorescent Cell-Conjugation by a Multifunctional Polymer: A New Application of the Hantzsch Reaction. ACS Macro Letters, 2017, 6, 550-555.	4.8	22
36	Cytotoxicity study of polyethylene glycol derivatives. RSC Advances, 2017, 7, 18252-18259.	3.6	132

ZHI-MING WANG

#	Article	IF	CITATIONS
37	Lewisâ€Baseâ€Catalyzed Alkylation Reaction of 4â€Hydroxycoumarins with Allenoates: Regioselective Synthesis of 2 <i>H</i> â€[3,2â€c] Furocoumarins and 4â€Hydroxycoumarin Vinyl Ether Derivatives. Asian Journal of Organic Chemistry, 2017, 6, 512-515.	2.7	5
38	The Hantzsch reaction in polymer chemistry: synthesis and tentative application. Polymer Chemistry, 2017, 8, 7290-7296.	3.9	42
39	Fluorescent protein-reactive polymers via one-pot combination of the Ugi reaction and RAFT polymerization. Polymer Chemistry, 2016, 7, 4867-4872.	3.9	18
40	Training the old dog new tricks: the applications of the Biginelli reaction in polymer chemistry. Science China Chemistry, 2016, 59, 1541-1547.	8.2	40
41	Nazarov cyclization of 1,4-pentadien-3-ols: preparation of cyclopenta[b]indoles and spiro[indene-1,4 \hat{a} e²-quinoline]s. Chemical Communications, 2016, 52, 2811-2814.	4.1	29
42	Postpolymerization Modification of Poly(dihydropyrimidin-2(1 <i>H</i>)-thione)s via the Thiourea–Haloalkane Reaction to Prepare Functional Polymers. ACS Macro Letters, 2015, 4, 843-847.	4.8	39
43	Iron oxide-silver magnetic nanoparticles as simple heterogeneous catalysts for the direct inter/intramolecular nucleophilic substitution of π-activated alcohols with electron-deficient amines. Tetrahedron, 2015, 71, 5254-5259.	1.9	29
44	Multicomponent Copolycondensates via the Simultaneous Hantzsch and Biginelli Reactions. ACS Macro Letters, 2015, 4, 1189-1193.	4.8	45
45	Phosphine catalysis of allenes with electrophiles. Chemical Society Reviews, 2014, 43, 2927-2940.	38.1	470
46	Metal-free synthesis of allylic amines by cross-dehydrogenative-coupling of 1,3-diarylpropenes with anilines and amides under mild conditions. Organic and Biomolecular Chemistry, 2012, 10, 4249.	2.8	38
47	FeCl3·6H2O-Catalyzed Intramolecular Allylic Amination: Synthesis of Substituted Dihydroquinolines and Quinolines. Journal of Organic Chemistry, 2012, 77, 8615-8620.	3.2	64
48	Copperâ€Catalyzed Cascade Acylation/Coupling Cyclization Process for the Synthesis of Polycyclic Fused Imidazo[2,1â€ <i>â€b</i>][1,3]thiazinones. Chinese Journal of Chemistry, 2011, 29, 2775-2780.	4.9	11
49	An Effective Synthesis of Indazolo[2,1â€ <i>a</i>]indazoleâ€6,12â€diones by Regioselective Copperâ€Catalyzed Cascade Acylation/Coupling Cyclization Process. Chinese Journal of Chemistry, 2011, 29, 2769-2774.	4.9	7
50	Diversity Through a Branched Reaction Pathway: Generation of Multicyclic Scaffolds and Identification of Antimigratory Agents. Chemistry - A European Journal, 2011, 17, 649-654.	3.3	57
51	Aplexone targets the HMG-CoA reductase pathway and differentially regulates arteriovenous angiogenesis. Development (Cambridge), 2011, 138, 1173-1181.	2.5	59
52	An effective synthesis of bromoesters from aromatic aldehydes using tribromide ionic liquid based on l-prolinol as reagent and reaction medium under mild conditions. Green Chemistry, 2006, 8, 1028.	9.0	51
53	Task-specific Ionic Liquids as Efficient, Green and Recyclable Reagents and Solvents for Oxidation of Olefins. Journal of Chemical Research, 2005, 2005, 388-390.	1.3	17
54	l-Proline promoted Ullmann-type reaction of vinyl bromides with imidazoles in ionic liquids. Chemical Communications, 2005, , 2849.	4.1	76