Klaus Richter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5545914/publications.pdf Version: 2024-02-01

KINIS RICHTED

#	Article	IF	CITATIONS
1	Hydroxymethylated resorcinol (HMR) primer to improve the performance of wood-adhesive bonds – A review. International Journal of Adhesion and Adhesives, 2022, 113, 103070.	2.9	7
2	Potentials for wood cascading: A model for the prediction of the recovery of timber in Germany. Resources, Conservation and Recycling, 2022, 178, 106101.	10.8	12
3	Acidic wood extractives accelerate the curing process of emulsion polymer isocyanate adhesives. Journal of Applied Polymer Science, 2022, 139, .	2.6	5
4	A new analytical approach to investigate the influence of wood extracts on the curing properties of phenol-resorcinol–formaldehyde (PRF) adhesives. Wood Science and Technology, 2022, 56, 349-365.	3.2	5
5	Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi. Fungal Biology and Biotechnology, 2022, 9, .	5.1	0
6	Polyurea Networks from Moisture-Cure, Reaction-Setting, Aliphatic Polyisocyanates with Tunable Mechanical and Thermal Properties. ACS Applied Polymer Materials, 2021, 3, 4070-4078.	4.4	15
7	Combined FTIR spectroscopy and rheology for measuring melamine urea formaldehyde (MUF) adhesive curing as influenced by different wood extracts. European Journal of Wood and Wood Products, 2020, 78, 85-91.	2.9	7
8	Multifunctionality of Forests: A White Paper on Challenges and Opportunities in China and Germany. Forests, 2020, 11, 266.	2.1	28
9	Brown rot gene expression and regulation in acetylated and furfurylated wood: a complex picture. Holzforschung, 2020, 74, 391-399.	1.9	9
10	Direct bioautography for the screening of selected tropical wood extracts against basidiomycetes. Holzforschung, 2020, 74, 733-743.	1.9	0
11	Eco-efficiency analysis of recycling recovered solid wood from construction into laminated timber products. Science of the Total Environment, 2019, 661, 107-119.	8.0	34
12	Larch (Larix decidua) bark insulation board: interactions of particle orientation, physical–mechanical and thermal properties. European Journal of Wood and Wood Products, 2018, 76, 489-498.	2.9	10
13	A Methodical Approach for Systematic Life Cycle Assessment of Wood-Based Furniture. Journal of Industrial Ecology, 2018, 22, 671-685.	5.5	12
14	Product environmental footprint of strawberries: Case studies in Estonia and Germany. Journal of Environmental Management, 2017, 203, 564-577.	7.8	34
15	The impact of a new emission control act on particulate matter emissions from residential wood energy use in Bavaria, Germany. Journal of Cleaner Production, 2017, 145, 134-141.	9.3	9
16	Resource efficiency of multifunctional wood cascade chains using LCA and exergy analysis, exemplified by a case study for Germany. Resources, Conservation and Recycling, 2017, 126, 141-152.	10.8	43
17	Topochemical analyses of furfuryl alcohol-modified radiata pine (<i>Pinus radiata</i>) by UMSP, light microscopy and SEM. Holzforschung, 2017, 71, 821-831.	1.9	21
18	Incipient brown rot decay in modified wood: patterns of mass loss, structural integrity, moisture and acetyl content in high resolution. International Wood Products Journal, 2017, 8, 172-182.	1.1	11

KLAUS RICHTER

#	Article	IF	CITATIONS
19	Improvement of a method for topochemical investigations of degraded furfurylated wood. International Wood Products Journal, 2016, 7, 96-101.	1.1	2
20	Systematic Review and Metaâ€Analysis of Life Cycle Assessments for Wood Energy Services. Journal of Industrial Ecology, 2016, 20, 743-763.	5.5	24
21	Spectral sensitivity in the photodegradation of fir wood (Abies alba Mill.) surfaces: correspondence of physical and chemical changes in natural weathering. Wood Science and Technology, 2016, 50, 989-1002.	3.2	18
22	The role of chemical transport in the brown-rot decay resistance of modified wood. International Wood Products Journal, 2016, 7, 66-70.	1.1	35
23	Evaluation of relationships between particle orientation and thermal conductivity in bark insulation board by means of CT and discrete modeling. Case Studies in Nondestructive Testing and Evaluation, 2016, 6, 21-29.	1.7	16
24	Environmental effects of shifts in a regional heating mix through variations in the utilization of solid biofuels. Journal of Environmental Management, 2016, 177, 177-191.	7.8	11
25	Mitigating environmental impacts through the energetic use of wood: Regional displacement factors generated by means of substituting non-wood heating systems. Science of the Total Environment, 2016, 569-570, 395-403.	8.0	17
26	Effects of thermal modification on Postia placenta wood degradation dynamics: measurements of mass loss, structural integrity and gene expression. Wood Science and Technology, 2016, 50, 385-397.	3.2	21
27	Analyzing wood bark insulation board structure using X-ray computed tomography and modeling its thermal conductivity by means of finite difference method. Journal of Composite Materials, 2016, 50, 795-806.	2.4	11
28	<i>In vitro</i> oxidative and enzymatic degradation of modified wood. International Wood Products Journal, 2015, 6, 36-39.	1.1	7
29	LCA-based optimization of wood utilization under special consideration of a cascading use of wood. Journal of Environmental Management, 2015, 152, 158-170.	7.8	81
30	Effects of increased wood energy consumption on global warming potential, primary energy demand and particulate matter emissions on regional level based on the case study area Bavaria (Southeast) Tj ETQq0 0 C	∫r gB7 T/Ove	erl oc k 10 Tf 5
31	Carbon footprints of the horticultural products strawberries, asparagus, roses and orchids in Germany. Journal of Cleaner Production, 2015, 87, 168-179.	9.3	45
32	Utilization of recovered wood in cascades versus utilization of primary wood—a comparison with life cycle assessment using system expansion. International Journal of Life Cycle Assessment, 2014, 19, 1755-1766.	4.7	69
33	Mode of action of brown rot decay resistance in modified wood: a review. Holzforschung, 2014, 68, 239-246.	1.9	95
34	Spectral sensitivity in the photodegradation of fir wood (Abies alba Mill.) surfaces: colour changes in natural weathering. Wood Science and Technology, 2014, 48, 239-252.	3.2	43
35	Density related properties of bark insulation boards bonded with tannin hexamine resin. European Journal of Wood and Wood Products, 2014, 72, 417-424.	2.9	42
36	Effect of wood modification on gene expression during incipient Postia placenta decay. International Biodeterioration and Biodegradation, 2014, 86, 86-91.	3.9	30

#	Article	IF	CITATIONS
37	Comparison of product carbon footprint standards with a case study on poinsettia (Euphorbia) Tj ETQq1 1 0.7843	814.rgBT / 4.7	Overlock 10 14
38	Investigation of thermally treated beech (Fagus sylvatica) and spruce (Picea abies) by means of multifunctional analytical pyrolysis-GC/MS. Journal of Analytical and Applied Pyrolysis, 2013, 100, 117-126.	5.5	28
39	Potentials for cascading of recovered wood from building deconstruction—A case study for south-east Germany. Resources, Conservation and Recycling, 2013, 78, 81-91.	10.8	80
40	Using Bark as a Heat Insulation Material. BioResources, 2013, 8, .	1.0	31
41	Influence of wood moisture content on bending and shear stiffness of cross laminated timber panels. European Journal of Wood and Wood Products, 2011, 69, 193-197.	2.9	35
42	Effect of Physisporinus vitreus on wood properties of Norway spruce. Part 2: Aspects of microtensile strength and chemical changes. Holzforschung, 2011, 65, .	1.9	4
43	Effect of Physisporinus vitreus on wood properties of Norway spruce. Part 1: Aspects of delignification and surface hardness. Holzforschung, 2011, 65, .	1.9	9
44	Influence of wood properties and bonding parameters on bond durability of European Beech (Fagus) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf

45	Quality control of glulam: shear testing of bondlines. European Journal of Wood and Wood Products, 2010, 68, 243-256.	2.9	14
46	DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils. Cellulose, 2010, 17, 387-398.	4.9	63
47	Anatomy of bioincised Norway spruce wood. International Biodeterioration and Biodegradation, 2010, 64, 346-355.	3.9	34
48	A Flexible Adhesive Layer to Strengthen Glulam Beams. Journal of Adhesion Science and Technology, 2010, 24, 1665-1701.	2.6	5
49	Hydroxymethylated Resorcinol (HMR) and Novolak-Based HMR (n-HMR) Primers to Enhance Bond Durability of Eucalyptus globulus Glulams. Journal of Adhesion Science and Technology, 2009, 23, 1925-1937.	2.6	26
50	Effect of treatments with 1,3-dimethylol-4,5-dihydroxy-ethyleneurea (DMDHEU) on the tensile properties of wood. Holzforschung, 2007, 61, 43-50.	1.9	64
51	Post-consumer waste wood in attributive product LCA. International Journal of Life Cycle Assessment, 2007, 12, 160-172.	4.7	25
52	Wooden building products in comparative LCA. International Journal of Life Cycle Assessment, 2007, 12, 470-479.	4.7	81
53	Post-consumer waste wood in attributive product LCA. International Journal of Life Cycle Assessment, 2007, 12, 160-172.	4.7	24
54	Wooden building products in comparative LCA. International Journal of Life Cycle Assessment, 2007, 12, 470-479.	4.7	71

KLAUS RICHTER

#	Article	IF	CITATIONS
55	Porous SiC Ceramics Derived from Tailored Wood-Based Fiberboards. Journal of the American Ceramic Society, 2006, 89, 1499-1503.	3.8	32
56	Strategies of social wasps for thermal homeostasis in light paper nests. Journal of Thermal Biology, 2006, 31, 599-604.	2.5	8
57	Greenhouse Gas Dynamics of an Increased Use of Wood in Buildings in Switzerland. Climatic Change, 2006, 74, 319-347.	3.6	46
58	Thermal stability of structural one-component polyurethane adhesives for wood—structure-property relationship. Journal of Applied Polymer Science, 2006, 102, 5698-5707.	2.6	36
59	Assessment of the Forest Products Industries. , 2006, , 193-208.		0
60	Weathering of wood modified with the N-methylol compound 1,3-dimethylol-4,5-dihydroxyethyleneurea. Polymer Degradation and Stability, 2005, 89, 189-199.	5.8	86
61	Thermal Stability of Wood-Wood and Wood-FRP Bonding with Polyurethane and Epoxy Adhesives. Advanced Engineering Materials, 2005, 7, 419-426.	3.5	49
62	PM10 emissions caused by the woodworking industry in Switzerland. European Journal of Wood and Wood Products, 2005, 63, 245-250.	2.9	2
63	The role of moisture in the nest thermoregulation of social wasps. Die Naturwissenschaften, 2005, 92, 427-430.	1.6	28
64	Carbon pool and substitution effects of an increased use of wood in buildings in Switzerland: first estimates. Annals of Forest Science, 2005, 62, 889-902.	2.0	44
65	Adhesion of water-borne acrylic and hybrid paint on wood treated with primers. Surface Coatings International Part B: Coatings Transactions, 2002, 85, 273-280.	0.3	3
66	Allocation in LCA of wood-based products experiences of cost action E9. International Journal of Life Cycle Assessment, 2002, 7, 369-375.	4.7	54
67	Allocation in Ica of wood-based products experiences of cost action E9 part i. methodology. International Journal of Life Cycle Assessment, 2002, 7, 290-294.	4.7	81
68	Post-consumer wood in environmental decision-support tools. Schweizerische Zeitschrift Fur Forstwesen, 2002, 153, 97-106.	0.1	12
69	Reply to the â€~letter to the editor' by Gjalt Huppes. International Journal of Life Cycle Assessment, 2000, 5, 189.	4.7	5
70	Economic Allocation in LCA: A Case Study About Aluminium Window Frames. International Journal of Life Cycle Assessment, 2000, 5, 79-83.	4.7	70
71	Holzprodukte in vergleichenden Ökobilanzen Wood Products in Comparative Life Cycle Assessment Studies. Schweizerische Zeitschrift Fur Forstwesen, 1999, 150, 96-104.	0.1	1
72	Untersuchung der kapillaren Transportwege im Weißtannenholz. European Journal of Wood and Wood Products, 1992, 50, 329.	2.9	8