Dirk Dietzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554591/publications.pdf Version: 2024-02-01

NIDE DIETZEI

#	Article	IF	CITATIONS
1	Shear-assisted contact aging of single-asperity nanojunctions. Physical Review B, 2022, 105, .	3.2	3
2	Thermal Activation of Nanoscale Wear. Physical Review Letters, 2021, 126, 196101.	7.8	7
3	Characterization of Vegard strain related to exceptionally fast Cu-chemical diffusion in Cu\$\$_2\$\$Mo\$\$_6\$\$S\$\$_8\$\$ by an advanced electrochemical strain microscopy method. Scientific Reports, 2021, 11, 18133.	3.3	1
4	Conformable metal oxide platelets – A smart surface armor for green tribology. Tribology International, 2021, 162, 107138.	5.9	3
5	Tribological Analysis of Contacts Between Glass and Tungsten Carbide Near the Glass Transition Temperature. Tribology Letters, 2020, 68, 1.	2.6	5
6	Single-asperity sliding friction across the superconducting phase transition. Science Advances, 2020, 6, eaay0165.	10.3	18
7	Friction vs. Area Scaling of Superlubric NaCl-Particles on Graphite. Lubricants, 2019, 7, 66.	2.9	8
8	Lattice Discontinuities of 1T-TaS2 across First Order Charge Density Wave Phase Transitions. Scientific Reports, 2019, 9, 7066.	3.3	17
9	Tribological properties of a phyllosilicate based microparticle oil additive. Wear, 2019, 426-427, 835-844.	3.1	9
10	Temperature Activates Contact Aging in Silica Nanocontacts. Physical Review X, 2019, 9, .	8.9	7
11	Nanoscale Characterization of Ion Mobility by Temperature-Controlled Li-Nanoparticle Growth. ACS Applied Materials & Interfaces, 2019, 11, 5476-5483.	8.0	13
12	Friction fluctuations of gold nanoparticles in the superlubric regime. Nanotechnology, 2018, 29, 155702.	2.6	28
13	Friction anomalies at first-order transition spinodals: 1T-TaS ₂ . New Journal of Physics, 2018, 20, 023033.	2.9	4
14	Recent highlights in nanoscale and mesoscale friction. Beilstein Journal of Nanotechnology, 2018, 9, 1995-2014.	2.8	27
15	Image contrast mechanisms in dynamic friction force microscopy: Antimony particles on graphite. Journal of Applied Physics, 2017, 121, 044307.	2.5	1
16	Nanotribological Properties of Hexadecanethiol Self-Assembled Monolayers on Au(111): Structure, Temperature, and Velocity. Langmuir, 2017, 33, 6005-6010.	3.5	5
17	Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size. ACS Nano, 2017, 11, 7642-7647.	14.6	83
18	Time Strengthening of Crystal Nanocontacts. Physical Review Letters, 2017, 118, 246101.	7.8	26

DIRK DIETZEL

#	Article	IF	CITATIONS
19	Universal Aging Mechanism for Static and Sliding Friction of Metallic Nanoparticles. Physical Review Letters, 2016, 117, 025502.	7.8	27
20	Tip radius quantification using feature-size mapping of field ion microscopy images. Physical Review B, 2014, 90, .	3.2	1
21	Influence of Contact Aging on Nanoparticle Friction Kinetics. Physical Review Letters, 2014, 112, 155503.	7.8	24
22	Nanotribological studies using nanoparticle manipulation: Principles and application to structural lubricity. Friction, 2014, 2, 114-139.	6.4	40
23	Scaling Laws of Structural Lubricity. Physical Review Letters, 2013, 111, 235502.	7.8	136
24	Spinning and translational motion of Sb nanoislands manipulated on MoS ₂ . Nanotechnology, 2013, 24, 325302.	2.6	16
25	Nanoscale electrochemical measurements on a lithium-ion conducting glass ceramic: In-situ monitoring of the lithium particle growth. Electrochemistry Communications, 2012, 18, 74-77.	4.7	15
26	Understanding frictional duality and bi-duality: Sb-nanoparticles on HOPG. Nanotechnology, 2011, 22, 085704.	2.6	24
27	Frictional duality of metallic nanoparticles: Influence of particle morphology, orientation, and air exposure. Physical Review B, 2010, 82, .	3.2	32
28	Transition from static to kinetic friction of metallic nanoparticles. Applied Physics Letters, 2009, 95, .	3.3	38
29	Frictional Duality Observed during Nanoparticle Sliding. Physical Review Letters, 2008, 101, 125505.	7.8	160
30	Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques. Journal of Applied Physics, 2007, 102, 084306.	2.5	74