Shaomin Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5545900/publications.pdf

Version: 2024-02-01

840776 642732 1,190 30 11 23 citations h-index g-index papers 30 30 30 2355 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental Study of Material Pick Up on Heat-Assisted Magnetic Recording (HAMR) Heads. Tribology Letters, 2021, 69, 1.	2.6	9
2	The ISPS/MIPE 2018 editorial for the joint conference on Information Storage and Processing Systems and Micromechatronics for Information and Precision Equipment, San Francisco, California, USA. Microsystem Technologies, 2020, 26, 1-2.	2.0	7
3	Spacing Control in Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2019, 55, 1-6.	2.1	2
4	Spacing Dependency of Near Field Recording and its Application. , 2018, , .		1
5	Setting Write Spacing in Heat Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2018, 54, 1-7.	2.1	8
6	Material Transfer Inside Head Disk Interface for Heat Assisted Magnetic Recording. Tribology Letters, 2017, 65, 1.	2.6	16
7	Head Disk Spacing Effect on Heat Transfer in Heat Assisted Magnetic Recording. , 2017, , .		2
8	Thermal Response Time of Media in Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	11
9	Compensation for the Write Start Transient in Heat-Assisted Magnetic Recording. IEEE Magnetics Letters, 2017, 8, 1-4.	1.1	2
10	Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites. Nano Letters, 2016, 16, 3630-3637.	9.1	142
11	Nanoscale heat transfer in the head-disk interface for heat assisted magnetic recording. Applied Physics Letters, 2016, 108, .	3.3	27
12	Transient Thermal Response of the Media by Free Space Laser Heating in Heat Assisted Magnetic Recording. , 2016, , .		2
13	A Method to Measure the Media Lubricant Loss After HAMR Recording. , 2016, , .		0
14	Lubricant reflow after laser heating in heat assisted magnetic recording. Journal of Applied Physics, 2015, 117, .	2 . 5	11
15	Observation of piezoelectricity in free-standing monolayer MoS2. Nature Nanotechnology, 2015, 10, 151-155.	31.5	685
16	A Magnetic Rotary Encoder for Patterned Media Lithography. , 2014, , .		0
17	Quantitative relationship between contact stress and magnetic signal strength in perpendicular recording media. Journal of Applied Physics, 2014, 115, 17B725.	2.5	5
18	A two-stage heating scheme for heat assisted magnetic recording. Journal of Applied Physics, 2014, 115, 178702.	2.5	15

#	Article	IF	CITATIONS
19	Hard Disk Drive Servo System Based on Field-Programmable Gate Arrays. IEEE Transactions on Industrial Electronics, 2014, 61, 4878-4884.	7.9	14
20	Lubricant depletion under various laser heating conditions in Heat Assisted Magnetic Recording (HAMR). Proceedings of SPIE, $2014, , .$	0.8	1
21	Experimental Study of Head-Disk Interface in Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2014, 50, 148-154.	2.1	14
22	Investigation of the Local Temperature Increase for Heat Assisted Magnetic Recording (HAMR). IEEE Transactions on Magnetics, 2014, 50, 1-6.	2.1	15
23	Position error signal generation in hard disk drives based on a field programmable gate array (FPGA). Microsystem Technologies, 2013, 19, 1307-1311.	2.0	6
24	Hard-particle-induced physical damage and demagnetization in the head-disk interface. Microsystem Technologies, 2013, 19, 1313-1317.	2.0	6
25	Flying Height Modulation for a Dual Thermal Protrusion Slider in Heat Assisted Magnetic Recording (HAMR). IEEE Transactions on Magnetics, 2013, 49, 5222-5226.	2.1	6
26	Investigation of the Local Temperature Increase From the Magnetization Decay for Heat Assisted Magnetic Recording. , 2013, , .		0
27	A Novel Approach of Carbon Embedding in Magnetic Media for Future Head/Disk Interface. IEEE Transactions on Magnetics, 2012, 48, 1807-1812.	2.1	18
28	Direct synthesis of self-aligned single-walled carbon nanotubes on paper. Carbon, 2012, 50, 1179-1185.	10.3	7
29	Flying Height Control Using Dual Thermal Protrusions in Heat Assisted Magnetic Recording (HAMR). , 2012, , .		0
30	Maskless Plasmonic Lithography at 22â€nm Resolution. Scientific Reports, 2011, 1, 175.	3.3	158