
Hansheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5545550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vapor diffusion synthesis of CoFe ₂ O ₄ hollow sphere/graphene composites as absorbing materials. Journal of Materials Chemistry A, 2014, 2, 735-744.	10.3	276
2	Rational Construction of Hierarchically Porous Fe–Co/N-Doped Carbon/rGO Composites for Broadband Microwave Absorption. Nano-Micro Letters, 2019, 11, 76.	27.0	135
3	One-Pot Synthesis of NiCo ₂ S ₄ Hollow Spheres via Sequential Ion-Exchange as an Enhanced Oxygen Bifunctional Electrocatalyst in Alkaline Solution. ACS Applied Materials & Interfaces, 2018, 10, 29521-29531.	8.0	113
4	Preparation of flower-like CoFe2O4@graphene composites and their microwave absorbing properties. Materials Letters, 2018, 223, 186-189.	2.6	108
5	Catalytic dehydration of methanol to dimethyl ether over micro–mesoporous ZSM-5/MCM-41 composite molecular sieves. Applied Catalysis A: General, 2012, 413-414, 36-42.	4.3	104
6	Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: Effect of SiO2/Al2O3 ratio in H-ZSM-5. Applied Catalysis A: General, 2013, 450, 152-159.	4.3	97
7	Hierarchical Co ₉ S ₈ @Carbon Hollow Microspheres as an Anode for Sodium Ion Batteries with Ultralong Cycling Stability. ACS Sustainable Chemistry and Engineering, 2019, 7, 6122-6130.	6.7	92
8	Preparation of Hollow Co ₃ O ₄ Microspheres and Their Ethanol Sensing Properties. Inorganic Chemistry, 2012, 51, 11513-11520.	4.0	88
9	Preparation of rugby-shaped CoFe ₂ O ₄ particles and their microwave absorbing properties. Journal of Materials Chemistry A, 2014, 2, 18033-18039.	10.3	83
10	Facile Synthesis of Co ₉ S ₈ Hollow Spheres as a High-Performance Electrocatalyst for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 1863-1871.	6.7	82
11	Study on nanomagnets supported TiO2 photocatalysts prepared by a sol–gel process in reverse microemulsion combining with solvent-thermal technique. Journal of Hazardous Materials, 2009, 169, 1045-1053.	12.4	77
12	Synthesis of Polyoxymethylene Dimethyl Ethers Catalyzed by BrĄ̃nsted Acid Ionic Liquids with Alkanesulfonic Acid Groups. Industrial & Engineering Chemistry Research, 2014, 53, 16254-16260.	3.7	73
13	Sandwich-like octahedral cobalt disulfide/reduced graphene oxide as an efficient Pt-free electrocatalyst for high-performance dye-sensitized solar cells. Carbon, 2017, 119, 225-234.	10.3	63
14	Cu/NC@Co/NC composites derived from core-shell Cu-MOF@Co-MOF and their electromagnetic wave absorption properties. Journal of Colloid and Interface Science, 2022, 613, 182-193.	9.4	59
15	Facile synthesis of Co0.85Se nanotubes/reduced graphene oxide nanocomposite as Pt-free counter electrode with enhanced electrocatalytic performance in dye-sensitized solar cells. Carbon, 2017, 122, 381-388.	10.3	56
16	Rational Design of N-Doped CuS@C Nanowires toward High-Performance Half/Full Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 11317-11327.	6.7	54
17	In situ chemical vapor deposition growth of carbon nanotubes on hollow CoFe2O4 as an efficient and low cost counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2016, 325, 417-426.	7.8	53
18	Preparation of Yolk–Shell‣tructured Co _{<i>x</i>} Fe _{1â^'<i>x</i>} P with Enhanced OER Performance. ChemSusChem, 2019, 12, 4461-4470.	6.8	53

#	Article	IF	CITATIONS
19	Revealing the effect of interfacial electron transfer in heterostructured Co ₉ S ₈ @NiFe LDH for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 12244-12254.	10.3	52
20	SiW12O40-Based Ionic Liquid Catalysts: Catalytic Esterification of Oleic Acid for Biodiesel Production. Industrial & Engineering Chemistry Research, 2012, 51, 10374-10380.	3.7	51
21	Acidic ionic liquid immobilized on magnetic mesoporous silica: Preparation and catalytic performance in esterification. Applied Catalysis A: General, 2012, 445-446, 239-245.	4.3	49
22	Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether. Journal of Energy Chemistry, 2013, 22, 769-777.	12.9	49
23	Iron-Doped Nickel Cobalt Phosphide Nanoarrays with Urchin-like Structures as High-Performance Electrocatalysts for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 6273-6281.	6.7	46
24	Construction of Porous Co ₉ S ₈ Hollow Boxes with Double Open Ends toward High-Performance Half/Full Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 6305-6314.	6.7	46
25	Graphitic carbon nitride quantum dot decorated three-dimensional graphene as an efficient metal-free electrocatalyst for triiodide reduction. Journal of Materials Chemistry A, 2018, 6, 5603-5607.	10.3	39
26	Transesterification of glycerol trioleate catalyzed by basic ionic liquids immobilized on magnetic nanoparticles: Influence of pore diffusion effect. Applied Catalysis A: General, 2013, 453, 327-333.	4.3	38
27	Synthesis of polyoxymethylene dimethyl ethers from methylal and trioxane catalyzed by BrÃ,nsted acid ionic liquids with different alkyl groups. RSC Advances, 2015, 5, 57968-57974.	3.6	38
28	Catalytic performance of acidic ionic liquid-functionalized silica in biodiesel production. Journal of Energy Chemistry, 2014, 23, 97-104.	12.9	31
29	Ultrathin-walled Co9S8 nanotube/reduced graphene oxide composite as an efficient electrocatalyst for the reduction of triiodide. Journal of Power Sources, 2016, 336, 132-142.	7.8	31
30	Rational design of metal organic framework derived hierarchical structural nitrogen doped porous carbon coated CoSe/nitrogen doped carbon nanotubes composites as a robust Pt-free electrocatalyst for dye-sensitized solar cells. Journal of Power Sources, 2019, 422, 122-130.	7.8	27
31	Light olefin production from catalytic pyrolysis of waste tires using nano-HZSM-5/γ-Al 2 O 3 catalysts. Journal of Analytical and Applied Pyrolysis, 2018, 129, 66-71.	5.5	26
32	Probing the synergistic effect of Mo on Ni-based catalyst in the hydrogenation of dicyclopentadiene. Applied Catalysis A: General, 2019, 574, 60-70.	4.3	26
33	HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuels: nano-ZSM-5 zeolites as the source. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	25
34	Effect of phosphorus and mesopore modification on the HZSM-5 zeolites for n-decane cracking. Journal of Solid State Chemistry, 2019, 271, 326-333.	2.9	24
35	Rational integration of hierarchical structural CoS1.097 nanosheets/reduced graphene oxide nanocomposites with enhanced electrocatalytic performance for triiodide reduction. Carbon, 2018, 126, 514-521.	10.3	23
36	Alkaline Ionic Liquids Immobilized on Protective Copolymers Coated Magnetic Nanoparticles: An Efficient and Magnetically Recyclable Catalyst for Knoevenagel Condensation. Industrial & Engineering Chemistry Research, 2019, 58, 2824-2834.	3.7	22

#	Article	IF	CITATIONS
37	Functionalized Core–Shell Polystyrene Sphere-Supported Alkaline Imidazolium Ionic Liquid: An Efficient and Recyclable Catalyst for Knoevenagel Condensation. ACS Sustainable Chemistry and Engineering, 2020, 8, 18126-18137.	6.7	22
38	Rational construction of yolk-shell structured Co3Fe7/FeO@carbon composite and optimization of its microwave absorption. Journal of Colloid and Interface Science, 2022, 626, 775-786.	9.4	22
39	Basic ionic liquid as catalyst and surfactant: green synthesis of quinazolinone in aqueous media. RSC Advances, 2018, 8, 36769-36774.	3.6	21
40	Integrating Amorphous Molybdenum Sulfide Nanosheets with a Co ₉ S ₈ @Ni ₃ S ₂ Array as an Efficient Electrocatalyst for Overall Water Splitting. Langmuir, 2022, 38, 3469-3479.	3.5	21
41	Catalytic performance of metal ion doped MCM-41 for methanol dehydration to dimethyl ether. Journal of Porous Materials, 2013, 20, 1509-1518.	2.6	20
42	Targeted imaging of brain gliomas using multifunctional Fe ₃ O ₄ /MnO nanoparticles. RSC Advances, 2015, 5, 33639-33645.	3.6	20
43	Oneâ€Pot Synthesis of CuCo 2 S 4 Subâ€Microspheres for Highâ€Performance Lithiumâ€/Sodiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 1558-1566.	3.4	20
44	MoS2 microsphere@ N-doped carbon composites as high performance anode materials for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 840, 230-236.	3.8	20
45	In-situ preparation of multi-layered sandwich-like CuCo2S4/rGO architectures as anode material for high-performance lithium and sodium ion batteries. Journal of Alloys and Compounds, 2020, 845, 156183.	5.5	20
46	Magnetic CoFe2O4 Nanoparticles Supported Basic Poly(Ionic Liquid)s Catalysts: Preparation and Catalytic Performance Comparison in Transesterification and Knoevenagel Condensation. Catalysis Letters, 2016, 146, 951-959.	2.6	19
47	Changes of Soybean Protein during Tofu Processing. Foods, 2021, 10, 1594.	4.3	19
48	lonic liquid-assisted solvothermal synthesis of hollow CoFe 2 O 4 microspheres and their absorbing performances. Materials Letters, 2017, 193, 232-235.	2.6	18
49	N-doped carbon confined CoFe@Pt nanoparticles with robust catalytic performance for the methanol oxidation reaction. Journal of Materials Chemistry A, 2022, 10, 13345-13354.	10.3	18
50	Rational Design of NiCo ₂ S ₄ Quantum Dot-Modified Nitrogen-Doped Carbon Nanotube Composites as Robust Pt-Free Electrocatalysts for Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 4344-4354.	5.1	16
51	Synthesis of methylal from methanol and formaldehyde catalyzed by BrÃ,nsted acid ionic liquids with different alkyl groups. RSC Advances, 2015, 5, 87200-87205.	3.6	15
52	In situ synthesis of Mg/Fe LDO/carbon nanohelix composites as absorbing materials. Journal of Alloys and Compounds, 2016, 658, 505-512.	5.5	15
53	Core–shell MoS2@graphene composite microspheres as stable anodes for Li-ion batteries. New Journal of Chemistry, 2018, 42, 15340-15345.	2.8	15
54	Metal - organic frameworks derived Ni5P4/NC@CoFeP/NC composites for highly efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 617, 585-593.	9.4	14

#	Article	IF	CITATIONS
55	Synthesis of magnetic nickel ferrite microspheres and their microwave absorbing properties. Chemical Research in Chinese Universities, 2016, 32, 678-681.	2.6	13
56	Preparation of coreâ€shell Znâ€doped CoFe ₂ O ₄ cubes @CNT composites and their absorbing performances. Micro and Nano Letters, 2017, 12, 227-230.	1.3	13
57	Basic polymerized imidazolide-based ionic liquid: an efficient catalyst for aqueous Knoevenagel condensation. RSC Advances, 2015, 5, 21415-21421.	3.6	12
58	Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries. Ionics, 2019, 25, 4659-4666.	2.4	12
59	Rational Design of Hierarchical Structural CoSe@NPC/CoSe@CNT Nanocomposites Derived from Metal–Organic Frameworks as a Robust Pt-free Electrocatalyst for Dye-Sensitized Solar Cells. ACS Omega, 2020, 5, 26253-26261.	3.5	12
60	Structural Regulation of Magnetic Polymer Microsphere@Ionic Liquids with an Intermediate Protective Layer and Application as Core–Shell–Shell Catalysts with High Stability and Activity. ACS Omega, 2020, 5, 23062-23069.	3.5	12
61	Numerical simulation and experimental investigation of gas-liquid two-phase flow in a complex microchannel. Chemical Engineering Science, 2021, 230, 116198.	3.8	12
62	Polystyrene Nanometer-Sized Particles Supported Alkaline Imidazolium Ionic Liquids as Reusable and Efficient Catalysts for the Knoevenagel Condensation in Aqueous Phase. Catalysis Letters, 2018, 148, 134-143.	2.6	11
63	Controllable construction of core–shell CuCo2S4@polypyrrole nanocomposites as advanced anode materials for high-performance sodium ion half/full batteries. Materials Chemistry Frontiers, 2021, 5, 293-303.	5.9	9
64	Carbon nanotubeâ€supported bimetallic Pt–Fe catalysts for nitrobenzene hydrogenation. Micro and Nano Letters, 2014, 9, 97-99.	1.3	8
65	<i>In situ</i> preparation of polyimide/aminoâ€functionalized carbon nanotube composites and their properties. Polymer Composites, 2014, 35, 1952-1959.	4.6	8
66	Synthesis of Surface-Active Heteropolyacid-Based Ionic Liquids and Their Catalytic Performance for Desulfurization of Fuel Oils. ACS Omega, 2020, 5, 31171-31179.	3.5	8
67	Synthesis of a novel titanium complex catalyst and its catalytic performance for olefin polymerization. Russian Journal of Applied Chemistry, 2015, 88, 1723-1727.	0.5	7
68	In situ Preparation of PI/Amino-Functionalized Graphene Composites and Their Properties. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 680-686.	2.1	7
69	Pomegranate-like Core–Shell Ni-NSs@MSNSs as a High Activity, Good Stability, Rapid Magnetic Separation, and Multiple Recyclability Nanocatalyst for DCPD Hydrogenation. ACS Omega, 2021, 6, 11570-11584.	3.5	7
70	Decolorizing kinetics of reactive black SRE by UV/TiO ₂ . Environmental Progress, 2008, 27, 104-110.	0.7	6
71	Controllable synthesis of multi-shelled SiO ₂ @C@NiCo ₂ O ₄ yolk–shell composites for enhancing microwave absorbing properties. New Journal of Chemistry, 2021, 45, 20928-20936.	2.8	6
72	Microemulsionâ€mediated solvothermal synthesis of hollow Co–Ni ferrite nanoparticle tubes and their magnetic properties. Micro and Nano Letters, 2013, 8, 68-69.	1.3	5

#	Article	IF	CITATIONS
73	Enhanced catalytic performance of UiO-66 via a sulfuric acid post-synthetic modification strategy with partial etching. Applied Catalysis A: General, 2020, 602, 117733.	4.3	5
74	Preparation and magnetic properties of hollow ferrite microspheres by a gas-phase diffusion method in an ionic liquid/H2O mixed solution. Journal of Materials Science, 2014, 49, 3795-3804.	3.7	4
75	Preparation of water-soluble magnetic nanoparticles with controllable silica coating. Chinese Journal of Chemical Engineering, 2018, 26, 213-217.	3.5	4
76	Structureâ€Designed Preparation of Podâ€Like CuCo 2 S 4 /rGO as Advanced Anode Material Targeting Superior Sodium Storage. ChemElectroChem, 2021, 8, 3666.	3.4	3
77	Controllable preparation of polyamide 12@SiO ₂ composite powders. Polymer Composites, 2019, 40, 1251-1257.	4.6	2
78	Light olefin production using the mixture of HZSM-5/MCM-41 and γ-Al2O3 as catalysts for catalytic pyrolysis of waste tires. Chemical Industry and Chemical Engineering Quarterly, 2021, 27, 69-78.	0.7	2
79	Synthesis of phenoxy-ester titanium complexes with different R1 and R2 substituents and their catalytic properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 194-200.	2.2	1
80	Preparation of Zn0.76Co0.24S@C yolk-shell sphere with phenonic resin derived carbon layer and its high electrochemical performance for sodium-ion batteries. Powder Technology, 2022, 404, 117422.	4.2	1