Julian A Hiscox

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5545438/julian-a-hiscox-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 141 7,205 44 h-index g-index citations papers 8.1 6.03 9,053 150 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
141	Mutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airway <i>Cell Reports</i> , 2022 , 110344	10.6	10
140	Avian Hepatitis E Virus ORF2 Protein Interacts with Rap1b to Induce Cytoskeleton Rearrangement That Facilitates Virus Internalization <i>Microbiology Spectrum</i> , 2022 , e0226521	8.9	0
139	Complement-Mediated Neutralisation Identified in Ebola Virus Disease Survivor Plasma: Implications for Protection and Pathogenesis <i>Frontiers in Immunology</i> , 2022 , 13, 857481	8.4	O
138	Analysis of SARS-CoV-2 in Nasopharyngeal Samples from Patients with COVID-19 Illustrates Population Variation and Diverse Phenotypes, Placing the Growth Properties of Variants of Concern in Context with Other Lineages <i>MSphere</i> , 2022 , e0091321	5	0
137	Neuroinvasion and Neurotropism by SARS-CoV-2 Variants in the K18-hACE2 Mouse. <i>Viruses</i> , 2022 , 14, 1020	6.2	6
136	Tissue Proteomic Analysis Identifies Mechanisms and Stages of Immunopathology in Fatal COVID-19. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2021 ,	5.7	5
135	Cell Division Control Protein 42 Interacts With Hepatitis E Virus Capsid Protein and Participates in Hepatitis E Virus Infection. <i>Frontiers in Microbiology</i> , 2021 , 12, 775083	5.7	0
134	Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. <i>Science Immunology</i> , 2021 , 6,	28	82
133	SARS-CoV-2 one year on: evidence for ongoing viral adaptation. <i>Journal of General Virology</i> , 2021 , 102,	4.9	63
132	Shutting the gate before the horse has bolted: is it time for a conversation about SARS-CoV-2 and antiviral drug resistance?. <i>Journal of Antimicrobial Chemotherapy</i> , 2021 , 76, 2230-2233	5.1	3
131	Longitudinal antibody and T cell responses in Ebola virus disease survivors and contacts: an observational cohort study. <i>Lancet Infectious Diseases, The</i> , 2021 , 21, 507-516	25.5	13
130	Tissue-Specific Immunopathology in Fatal COVID-19. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2021 , 203, 192-201	10.2	116
129	Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity. <i>Nature Communications</i> , 2021 , 12, 81	17.4	84
128	Analysis of an Ebola virus disease survivor whose host and viral markers were predictive of death indicates the effectiveness of medical countermeasures and supportive care. <i>Genome Medicine</i> , 2021 , 13, 5	14.4	5
127	Comparison of rhesus and cynomolgus macaques as an infection model for COVID-19. <i>Nature Communications</i> , 2021 , 12, 1260	17.4	55
126	Single-dose immunisation with a multimerised SARS-CoV-2 receptor binding domain (RBD) induces an enhanced and protective response in mice. <i>FEBS Letters</i> , 2021 , 595, 2323-2340	3.8	10
125	Amplicon and Metagenomic Analysis of Middle East Respiratory Syndrome (MERS) Coronavirus and the Microbiome in Patients with Severe MERS. <i>MSphere</i> , 2021 , 6, e0021921	5	4

124	Dose-Dependent Response to Infection with Ebola Virus in the Ferret Model and Evidence of Viral Evolution in the Eye. <i>Journal of Virology</i> , 2021 , 95, e0083321	6.6	2
123	Deep splicing plasticity of the human adenovirus type 5 transcriptome drives virus evolution. <i>Communications Biology</i> , 2020 , 3, 124	6.7	21
122	TREM-1 activation is a potential key regulator in driving severe pathogenesis of enterovirus A71 infection. <i>Scientific Reports</i> , 2020 , 10, 3810	4.9	7
121	Coronaviruses in animals and humans. <i>BMJ, The</i> , 2020 , 368, m634	5.9	15
120	The Secretome Profiling of a Pediatric Airway Epithelium Infected with hRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins. <i>Molecular and Cellular Proteomics</i> , 2020 , 19, 793-807	7.6	9
119	An Investigation of the Effect of Transfected Defective, Ebola Virus Genomes on Ebola Replication. <i>Frontiers in Cellular and Infection Microbiology</i> , 2020 , 10, 159	5.9	0
118	Quantification of Ebola virus replication kinetics in vitro. PLoS Computational Biology, 2020, 16, e10083	75	2
117	Neuropilin-1 is a host factor for SARS-CoV-2 infection. <i>Science</i> , 2020 , 370, 861-865	33.3	568
116	Variation around the dominant viral genome sequence contributes to viral load and outcome in patients with Ebola virus disease. <i>Genome Biology</i> , 2020 , 21, 238	18.3	12
115	Structural Characterization of Non-structural Protein 9 Complexed With Specific Nanobody Pinpoints Two Important Residues Involved in Porcine Reproductive and Respiratory Syndrome Virus Replication. <i>Frontiers in Microbiology</i> , 2020 , 11, 581856	5.7	4
114	Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. <i>Genome Medicine</i> , 2020 , 12, 68	14.4	228
113	Amplicon-Based Detection and Sequencing of SARS-CoV-2 in Nasopharyngeal Swabs from Patients With COVID-19 and Identification of Deletions in the Viral Genome That Encode Proteins Involved in Interferon Antagonism. <i>Viruses</i> , 2020 , 12,	6.2	23
112	Direct Interaction Between CD163 N-Terminal Domain and MYH9 C-Terminal Domain Contributes to Porcine Reproductive and Respiratory Syndrome Virus Internalization by Permissive Cells. <i>Frontiers in Microbiology</i> , 2019 , 10, 1815	5.7	8
111	Chicken Organic Anion-Transporting Polypeptide 1A2, a Novel Avian Hepatitis E Virus (HEV) ORF2-Interacting Protein, Is Involved in Avian HEV Infection. <i>Journal of Virology</i> , 2019 , 93,	6.6	3
110	High Resolution Analysis of Respiratory Syncytial Virus Infection In Vivo. Viruses, 2019, 11,	6.2	6
109	Immunological observations and transcriptomic analysis of trimester-specific full-term placentas from three Zika virus-infected women. <i>Clinical and Translational Immunology</i> , 2019 , 8, e01082	6.8	10
108	Investigating the Cellular Transcriptomic Response Induced by the Makona Variant of Ebola Virus in Differentiated THP-1 Cells. <i>Viruses</i> , 2019 , 11,	6.2	5
107	Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. <i>Science</i> , 2019 , 363, 74-77	33.3	130

106	Experimental infection of rabbit with swine-derived hepatitis E virus genotype 4. <i>Veterinary Microbiology</i> , 2019 , 229, 168-175	3.3	11
105	Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus. <i>Journal of Virology</i> , 2018 , 92,	6.6	8
104	Zika Virus Infection Preferentially Counterbalances Human Peripheral Monocyte and/or NK Cell Activity. <i>MSphere</i> , 2018 , 3,	5	22
103	T-Cell Receptor Diversity and the Control of T-Cell Homeostasis Mark Ebola Virus Disease Survival in Humans. <i>Journal of Infectious Diseases</i> , 2018 , 218, S508-S518	7	13
102	Viperin Poisons Viral Replication. <i>Cell Host and Microbe</i> , 2018 , 24, 181-183	23.4	6
101	Recombinant MYH9 protein C-terminal domain blocks porcine reproductive and respiratory syndrome virus internalization by direct interaction with viral glycoprotein 5. <i>Antiviral Research</i> , 2018 , 156, 10-20	10.8	14
100	Assessment of metagenomic Nanopore and Illumina sequencing for recovering whole genome sequences of chikungunya and dengue viruses directly from clinical samples. <i>Eurosurveillance</i> , 2018 , 23,	19.8	59
99	Porcine reproductive and respiratory syndrome virus inhibits MARC-145 proliferation via inducing apoptosis and G2/M arrest by activation of Chk/Cdc25C and p53/p21 pathway. <i>Virology Journal</i> , 2018 , 15, 169	6.1	12
98	Cross-species infection of mice by rabbit hepatitis E virus. <i>Veterinary Microbiology</i> , 2018 , 225, 48-52	3.3	9
97	Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus. <i>Genome Biology</i> , 2017 , 18, 4	18.3	81
96	Rabbit hepatitis E virus is an opportunistic pathogen in specific-pathogen-free rabbits with the capability of cross-species transmission. <i>Veterinary Microbiology</i> , 2017 , 201, 72-77	3.3	17
95	A comparison of host gene expression signatures associated with infection in vitro by the Makona and Ecran (Mayinga) variants of Ebola virus. <i>Scientific Reports</i> , 2017 , 7, 43144	4.9	16
94	Virus genomes reveal factors that spread and sustained the Ebola epidemic. <i>Nature</i> , 2017 , 544, 309-315	5 50.4	238
93	Heme oxygenase-1 metabolite biliverdin, not iron, inhibits porcine reproductive and respiratory syndrome virus replication. <i>Free Radical Biology and Medicine</i> , 2017 , 102, 149-161	7.8	16
92	Deep Sequencing of RNA from Blood and Oral Swab Samples Reveals the Presence of Nucleic Acid from a Number of Pathogens in Patients with Acute Ebola Virus Disease and Is Consistent with Bacterial Translocation across the Gut. <i>MSphere</i> , 2017 , 2,	5	26
91	Immunopathogenesis and Virus-Host Interactions of Enterovirus 71 in Patients with Hand, Foot and Mouth Disease. <i>Frontiers in Microbiology</i> , 2017 , 8, 2249	5.7	30
90	MYH9 is an Essential Factor for Porcine Reproductive and Respiratory Syndrome Virus Infection. <i>Scientific Reports</i> , 2016 , 6, 25120	4.9	53
89	Elucidation of the Cellular Interactome of Ebola Virus Nucleoprotein and Identification of Therapeutic Targets. <i>Journal of Proteome Research</i> , 2016 , 15, 4290-4303	5.6	31

(2014-2016)

88	reproductive and respiratory syndrome virus with host cellular proteins using high throughput proteomics and identification of HSP70 as a cellular factor for virus replication. <i>Journal of</i>	3.9	13
87	Proteomics, 2016 , 146, 58-69 Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Interacts with Nsp9 and Cellular DHX9 To Regulate Viral RNA Synthesis. <i>Journal of Virology</i> , 2016 , 90, 5384-5398	6.6	35
86	Real-time, portable genome sequencing for Ebola surveillance. <i>Nature</i> , 2016 , 530, 228-232	50.4	845
85	Characterization of the Interactome of the Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 2 Reveals the Hyper Variable Region as a Binding Platform for Association with 14-3-3 Proteins. <i>Journal of Proteome Research</i> , 2016 , 15, 1388-401	5.6	12
84	Antiviral Screening of Multiple Compounds against Ebola Virus. Viruses, 2016, 8,	6.2	31
83	Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection. <i>PLoS ONE</i> , 2016 , 11, e0157887	3.7	19
82	Investigating the Influence of Ribavirin on Human Respiratory Syncytial Virus RNA Synthesis by Using a High-Resolution Transcriptome Sequencing Approach. <i>Journal of Virology</i> , 2016 , 90, 4876-4888	6.6	21
81	Heat Shock Protein 70 Family Members Interact with Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus Nucleocapsid Proteins and Perform a Functional Role in the Nairovirus Replication Cycle. <i>Journal of Virology</i> , 2016 , 90, 9305-16	6.6	27
80	Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells. <i>Virology</i> , 2015 , 484, 136-145	3.6	18
79	Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa. <i>Nature</i> , 2015 , 524, 97-101	50.4	229
78	The crystal structure of the Hazara virus nucleocapsid protein. <i>BMC Structural Biology</i> , 2015 , 15, 24	2.7	21
77	Intranasal inoculation of sows with highly pathogenic porcine reproductive and respiratory syndrome virus at mid-gestation causes transplacental infection of fetuses. <i>Veterinary Research</i> , 2015 , 46, 142	3.8	4
76	Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology. <i>Journal of Pharmacy and Pharmacology</i> , 2015 , 67, 300-18	4.8	14
75	Interactome analysis of the human respiratory syncytial virus RNA polymerase complex identifies protein chaperones as important cofactors that promote L-protein stability and RNA synthesis. Journal of Virology, 2015, 89, 917-30	6.6	48
74	Resolution of the cellular proteome of the nucleocapsid protein from a highly pathogenic isolate of porcine reproductive and respiratory syndrome virus identifies PARP-1 as a cellular target whose interaction is critical for virus biology. <i>Veterinary Microbiology</i> , 2015 , 176, 109-19	3.3	21
73	MicroRNA miR-24-3p promotes porcine reproductive and respiratory syndrome virus replication through suppression of heme oxygenase-1 expression. <i>Journal of Virology</i> , 2015 , 89, 4494-503	6.6	63
72	Human respiratory syncytial virus non-structural protein NS1 modifies miR-24 expression via transforming growth factor-[] <i>Journal of General Virology</i> , 2015 , 96, 3179-3191	4.9	22
	Anti-idiotypic antibodies reduce efficacy of the attenuated vaccine against highly pathogenic		

70	Heme oxygenase-1 acts as an antiviral factor for porcine reproductive and respiratory syndrome virus infection and over-expression inhibits virus replication in vitro. <i>Antiviral Research</i> , 2014 , 110, 60-9	10.8	42
69	Factors affecting de novo RNA synthesis and back-priming by the respiratory syncytial virus polymerase. <i>Virology</i> , 2014 , 462-463, 318-27	3.6	18
68	Elucidation of the Ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function. <i>Journal of Proteome Research</i> , 2014 , 13, 5120-35	5.6	65
67	GP5 expression in Marc-145 cells inhibits porcine reproductive and respiratory syndrome virus infection by inducing beta interferon activity. <i>Veterinary Microbiology</i> , 2014 , 174, 409-418	3.3	7
66	Crystal structure of the essential transcription antiterminator M2-1 protein of human respiratory syncytial virus and implications of its phosphorylation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 1580-5	11.5	53
65	Elucidating variations in the nucleotide sequence of Ebola virus associated with increasing pathogenicity. <i>Genome Biology</i> , 2014 , 15, 540	18.3	35
64	The cellular interactome of the coronavirus infectious bronchitis virus nucleocapsid protein and functional implications for virus biology. <i>Journal of Virology</i> , 2013 , 87, 9486-500	6.6	59
63	Characterization of antigenic domains and epitopes in the ORF3 protein of a Chinese isolate of avian hepatitis E virus. <i>Veterinary Microbiology</i> , 2013 , 167, 242-9	3.3	9
62	The asymmetric structure of an icosahedral virus bound to its receptor suggests a mechanism for genome release. <i>Structure</i> , 2013 , 21, 1225-34	5.2	51
61	PK-15 cells transfected with porcine CD163 by PiggyBac transposon system are susceptible to porcine reproductive and respiratory syndrome virus. <i>Journal of Virological Methods</i> , 2013 , 193, 383-90	2.6	29
60	Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization. <i>Nucleic Acids Research</i> , 2013 , 41, 5912-26	20.1	46
59	Different NF- B activation characteristics of human respiratory syncytial virus subgroups A and B. <i>Microbial Pathogenesis</i> , 2012 , 52, 184-91	3.8	7
58	Biophysical characterisation of the nucleocapsid protein from a highly pathogenic porcine reproductive and respiratory syndrome virus strain. <i>Biochemical and Biophysical Research Communications</i> , 2012 , 419, 137-41	3.4	11
57	An interactome map of the nucleocapsid protein from a highly pathogenic North American porcine reproductive and respiratory syndrome virus strain generated using SILAC-based quantitative proteomics. <i>Proteomics</i> , 2012 , 12, 1015-23	4.8	32
56	A quantitative proteomic analysis of lung epithelial (A549) cells infected with 2009 pandemic influenza A virus using stable isotope labelling with amino acids in cell culture. <i>Proteomics</i> , 2012 , 12, 1431-6	4.8	36
55	Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes. <i>Proteomics</i> , 2012 , 12, 666-72	4.8	50
54	The interactome of the human respiratory syncytial virus NS1 protein highlights multiple effects on host cell biology. <i>Journal of Virology</i> , 2012 , 86, 7777-89	6.6	53
53	Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. <i>Journal of Virology</i> , 2012 , 86, 10914-23	6.6	80

52	Nucleolar NF- B /RelA mediates apoptosis by causing cytoplasmic relocalization of nucleophosmin. <i>Cell Death and Differentiation</i> , 2011 , 18, 1889-903	12.7	72
51	Characterization of the interaction between human respiratory syncytial virus and the cell cycle in continuous cell culture and primary human airway epithelial cells. <i>Journal of Virology</i> , 2011 , 85, 10300-9	6.6	25
50	Viruses and the Nucleolus 2011 , 321-345		7
49	Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus. <i>Molecular and Cellular Proteomics</i> , 2010 , 9, 2438-59	7.6	79
48	Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals changes in the cytoplasmic, nuclear, and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus. <i>Molecular and Cellular Proteomics</i> , 2010 , 9, 1920-36	7.6	70
47	Quantitative proteomics using SILAC coupled to LC-MS/MS reveals changes in the nucleolar proteome in influenza A virus-infected cells. <i>Journal of Proteome Research</i> , 2010 , 9, 5335-45	5.6	69
46	Direct visualization of the small hydrophobic protein of human respiratory syncytial virus reveals the structural basis for membrane permeability. <i>FEBS Letters</i> , 2010 , 584, 2786-90	3.8	45
45	Elucidation of the avian nucleolar proteome by quantitative proteomics using SILAC and changes in cells infected with the coronavirus infectious bronchitis virus. <i>Proteomics</i> , 2010 , 10, 3558-62	4.8	28
44	Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus subgroup B using SILAC coupled to LC-MS/MS. <i>Proteomics</i> , 2010 , 10, 4320-34	4.8	42
43	Nucleolar proteomics and viral infection. <i>Proteomics</i> , 2010 , 10, 4077-86	4.8	51
42	Nucleolar targeting: the hub of the matter. <i>EMBO Reports</i> , 2009 , 10, 231-8	6.5	223
41	Role of phosphorylation clusters in the biology of the coronavirus infectious bronchitis virus nucleocapsid protein. <i>Virology</i> , 2008 , 370, 373-81	3.6	32
40	A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging. <i>Virology</i> , 2008 , 378, 34-47	3.6	19
39	Viral nucleolar localisation signals determine dynamic trafficking within the nucleolus. <i>Virology</i> , 2008 , 380, 191-202	3.6	29
38	Production of an infectious Herpesvirus saimiri-based episomally maintained amplicon system. Journal of Biotechnology, 2008 , 134, 287-96	3.7	11
37	RNA viruses: hijacking the dynamic nucleolus. <i>Nature Reviews Microbiology</i> , 2007 , 5, 119-27	22.2	204
36	Lithium chloride inhibits the coronavirus infectious bronchitis virus in cell culture. <i>Avian Pathology</i> , 2007 , 36, 109-14	2.4	58
35	Cell cycle dependent nucleolar localization of the coronavirus nucleocapsid protein. <i>Cell Cycle</i> , 2007 , 6, 863-7	4.7	44

34	Characterization of the nuclear export signal in the coronavirus infectious bronchitis virus nucleocapsid protein. <i>Journal of Virology</i> , 2007 , 81, 4298-304	6.6	19
33	Recombinant viral proteins for use in diagnostic ELISAs to detect virus infection. <i>Vaccine</i> , 2007 , 25, 565	3 z 91	15
32	Trafficking motifs in the SARS-coronavirus nucleocapsid protein. <i>Biochemical and Biophysical Research Communications</i> , 2007 , 358, 1015-20	3.4	18
31	Characterisation of cyclin D1 down-regulation in coronavirus infected cells. <i>FEBS Letters</i> , 2007 , 581, 12	75 , . 8 6	14
30	Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication. <i>Journal of Virology</i> , 2006 , 80, 4147-56	6.6	93
29	Characterisation of the RNA binding properties of the coronavirus infectious bronchitis virus nucleocapsid protein amino-terminal region. <i>FEBS Letters</i> , 2006 , 580, 5993-8	3.8	35
28	Changes in nucleolar morphology and proteins during infection with the coronavirus infectious bronchitis virus. <i>Cellular Microbiology</i> , 2006 , 8, 1147-57	3.9	47
27	Delineation and modelling of a nucleolar retention signal in the coronavirus nucleocapsid protein. <i>Traffic</i> , 2006 , 7, 833-48	5.7	45
26	Expression and structural analysis of infectious bronchitis virus nucleoprotein. <i>Advances in Experimental Medicine and Biology</i> , 2006 , 581, 133-8	3.6	4
25	Three-dimensional reconstruction of the nucleolus using meta-confocal microscopy in cells expressing the coronavirus nucleoprotein. <i>Advances in Experimental Medicine and Biology</i> , 2006 , 581, 313-8	3.6	5
24	Infectious bronchitis coronavirus induces cell-cycle perturbations. <i>Advances in Experimental Medicine and Biology</i> , 2006 , 581, 357-62	3.6	1
23	Nucleolin is regulated both at the level of transcription and translation. <i>Biochemical and Biophysical Research Communications</i> , 2005 , 332, 817-22	3.4	28
22	Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. <i>Journal of Virology</i> , 2005 , 79, 1164-79	6.6	97
21	The cell cycle and virus infection. <i>Methods in Molecular Biology</i> , 2005 , 296, 197-218	1.4	31
20	Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein. Journal of General Virology, 2005 , 86, 3303-3310	4.9	65
19	ACE2: from vasopeptidase to SARS virus receptor. <i>Trends in Pharmacological Sciences</i> , 2004 , 25, 291-4	13.2	370
18	Evaluation of a nucleoprotein-based enzyme-linked immunosorbent assay for the detection of antibodies against infectious bronchitis virus. <i>Avian Pathology</i> , 2003 , 32, 519-26	2.4	40
17	The interaction of animal cytoplasmic RNA viruses with the nucleus to facilitate replication. <i>Virus Research</i> , 2003 , 95, 13-22	6.4	70

LIST OF PUBLICATIONS

16	The nucleolusa gateway to viral infection?. Archives of Virology, 2002, 147, 1077-89	2.6	180
15	Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell. <i>Journal of Virology</i> , 2002 , 76, 5233-50	6.6	110
14	The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. <i>Journal of Virology</i> , 2001 , 75, 506-12	6.6	159
13	Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. <i>Journal of Virology</i> , 2001 , 75, 9345-56	6.6	176
12	Quantification of individual subgenomic mRNA species during replication of the coronavirus transmissible gastroenteritis virus. <i>Virus Research</i> , 1995 , 36, 119-30	6.4	34
11	SARS-CoV-2 Omicron-B.1.1.529 Variant leads to less severe disease than Pango B and Delta variants strains in a mouse model of severe COVID-19		31
10	Amplicon based MinION sequencing of SARS-CoV-2 and metagenomic characterisation of nasopharyngeal swabs from patients with COVID-19		24
9	Characterisation of the transcriptome and proteome of SARS-CoV-2 using direct RNA sequencing and tandem mass spectrometry reveals evidence for a cell passage induced in-frame deletion in the spike glycoprotein that removes the furin-like cleavage site		33
8	Sequential infection with influenza A virus followed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to more severe disease and encephalitis in a mouse model of COVID-	19	7
7	Assessment of Metagenomic MinION and Illumina sequencing as an approach for the recovery of whole genome sequences of chikungunya and dengue viruses directly from clinical samples		2
6	Identification and quantification of SARS-CoV-2 leader subgenomic mRNA gene junctions in nasopharyngeal samples shows phasic transcription in animal models of COVID-19 and dysregulation at later time points that can also be identified in humans		1
5	Sequence analysis of SARS-CoV-2 in nasopharyngeal samples from patients with COVID-19 illustrates population variation and diverse phenotypes, placing the in vitro growth properties of B.1.1.7 and B.1.351 lineage viruses in context		2
4	Naturally-acquired immunity in Syrian Golden Hamsters provides protection from re-exposure to emerging heterosubtypic SARS-CoV-2 variants B.1.1.7 and B.1.351		2
3	Single-dose immunisation with a multimerised SARS-CoV-2 receptor binding domain (RBD) induces an enhanced and protective response in mice		2
2	Mutations that adapt SARS-CoV-2 to mustelid hosts do not increase fitness in the human airway		2
1	Rapid selection of P323L in the SARS-CoV-2 polymerase (NSP12) in humans and non-human primate models and confers a large plaque phenotype		2