
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554531/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Opsonin-Deficient Nucleoproteic Corona Endows UnPEGylated Liposomes with Stealth Properties <i>In Vivo</i> . ACS Nano, 2022, 16, 2088-2100.	14.6	28
2	Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting. Nano Today, 2022, 43, 101403.	11.9	26
3	Magnetic Levitation of Personalized Nanoparticle–Protein Corona as an Effective Tool for Cancer Detection. Nanomaterials, 2022, 12, 1397.	4.1	8
4	Fluorescence lifetime microscopy unveils the supramolecular organization of liposomal Doxorubicin. Nanoscale, 2022, 14, 8901-8905.	5.6	11
5	<i>In vitro</i> and <i>ex vivo</i> nano-enabled immunomodulation by the protein corona. Nanoscale, 2022, 14, 10531-10539.	5.6	3
6	Magnetic Levitation Patterns of Microfluidic-Generated Nanoparticle–Protein Complexes. Nanomaterials, 2022, 12, 2376.	4.1	7
7	Efficient pancreatic cancer detection through personalized protein corona of gold nanoparticles. Biointerphases, 2021, 16, 011010.	1.6	10
8	Protein corona profile of graphene oxide allows detection of glioblastoma multiforme using a simple one-dimensional gel electrophoresis technique: a proof-of-concept study. Biomaterials Science, 2021, 9, 4671-4678.	5.4	11
9	Optimal centrifugal isolating of liposome–protein complexes from human plasma. Nanoscale Advances, 2021, 3, 3824-3834.	4.6	12
10	Inhibiting the Growth of 3D Brain Cancer Models with Bio-Coronated Liposomal Temozolomide. Pharmaceutics, 2021, 13, 378.	4.5	12
11	Nanotechnology and pancreatic cancer management: State of the art and further perspectives. World Journal of Gastrointestinal Oncology, 2021, 13, 231-237.	2.0	22
12	A Proteomic Study on the Personalized Protein Corona of Liposomes. Relevance for Early Diagnosis of Pancreatic DUCTAL Adenocarcinoma and Biomarker Detection. Journal of Nanotheranostics, 2021, 2, 82-93.	3.1	10
13	The role of sex as a biological variable in the efficacy and toxicity of therapeutic nanomedicine. Advanced Drug Delivery Reviews, 2021, 174, 337-347.	13.7	21
14	Microfluidic Formulation of DNA-Loaded Multicomponent Lipid Nanoparticles for Gene Delivery. Pharmaceutics, 2021, 13, 1292.	4.5	25
15	Probing the role of nuclear-envelope invaginations in the nuclear-entry route of lipofected DNA by multi-channel 3D confocal microscopy. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111881.	5.0	5
16	Synergistic Analysis of Protein Corona and Haemoglobin Levels Detects Pancreatic Cancer. Cancers, 2021, 13, 93.	3.7	21
17	Detection of Pancreatic Ductal Adenocarcinoma by Ex Vivo Magnetic Levitation of Plasma Protein-Coated Nanoparticles. Cancers, 2021, 13, 5155.	3.7	11
18	A comprehensive analysis of liposomal biomolecular corona upon human plasma incubation: The evolution towards the lipid corona. Talanta, 2020, 209, 120487.	5.5	20

#	Article	IF	CITATIONS
19	A mechanistic explanation of the inhibitory role of the protein corona on liposomal gene expression. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183159.	2.6	10
20	A protein corona sensor array detects breast and prostate cancers. Nanoscale, 2020, 12, 16697-16704.	5.6	17
21	Protein corona-enabled serological tests for early stage cancer detection. Sensors International, 2020, 1, 100025.	8.4	14
22	Mechanistic Insights into the Release of Doxorubicin from Graphene Oxide in Cancer Cells. Nanomaterials, 2020, 10, 1482.	4.1	20
23	Fine-Tuning of Nanoparticle-Protein Corona Composition: A New Strategy for the Development of Efficient in Vitro Diagnostic Testing for Early Pancreatic Cancer Detection. Journal of the American College of Surgeons, 2020, 231, e34.	0.5	1
24	Personalized Graphene Oxide-Protein Corona in the Human Plasma of Pancreatic Cancer Patients. Frontiers in Bioengineering and Biotechnology, 2020, 8, 491.	4.1	45
25	Effect of Protein Corona on The Transfection Efficiency of Lipid-Coated Graphene Oxide-Based Cell Transfection Reagents. Pharmaceutics, 2020, 12, 113.	4.5	15
26	Impact of the protein corona on nanomaterial immune response and targeting ability. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1615.	6.1	44
27	Interplay of protein corona and immune cells controls blood residency of liposomes. Nature Communications, 2019, 10, 3686.	12.8	160
28	Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Nanoscale, 2019, 11, 15339-15346.	5.6	42
29	Combining Inflammatory Biomarkers and Laboratory Tests with Nanoparticle-Protein Corona Technology Makes a Significant Advance in Early Pancreatic Cancer Detection. Journal of the American College of Surgeons, 2019, 229, e33.	0.5	0
30	Microfluidic manufacturing of surface-functionalized graphene oxide nanoflakes for gene delivery. Nanoscale, 2019, 11, 2733-2741.	5.6	67
31	Protein Corona Fingerprints of Liposomes: New Opportunities for Targeted Drug Delivery and Early Detection in Pancreatic Cancer. Pharmaceutics, 2019, 11, 31.	4.5	39
32	Disease-specific protein corona sensor arrays may have disease detection capacity. Nanoscale Horizons, 2019, 4, 1063-1076.	8.0	68
33	The biomolecular corona of gold nanoparticles in a controlled microfluidic environment. Lab on A Chip, 2019, 19, 2557-2567.	6.0	40
34	Microfluidic-generated lipid-graphene oxide nanoparticles for gene delivery. Applied Physics Letters, 2019, 114, 233701.	3.3	21
35	Exploitation of nanoparticle-protein interactions for early disease detection. Applied Physics Letters, 2019, 114, 163702.	3.3	25
36	Effect of Glucose on Liposome–Plasma Protein Interactions: Relevance for the Physiological Response of Clinically Approved Liposomal Formulations. Advanced Biology, 2019, 3, e1800221.	3.0	11

#	Article	IF	CITATIONS
37	Nanoparticleâ€biomolecular corona: A new approach for the early detection of nonâ€smallâ€cell lung cancer. Journal of Cellular Physiology, 2019, 234, 9378-9386.	4.1	22
38	Nanoparticle-Blood Interactions: New Insights into Pancreatic Cancer Biology?. Journal of the American College of Surgeons, 2018, 227, e177.	0.5	0
39	Cationic lipid/DNA complexes manufactured by microfluidics and bulk self-assembly exhibit different transfection behavior. Biochemical and Biophysical Research Communications, 2018, 503, 508-512.	2.1	11
40	Brain Targeting by Liposome–Biomolecular Corona Boosts Anticancer Efficacy of Temozolomide in Glioblastoma Cells. ACS Chemical Neuroscience, 2018, 9, 3166-3174.	3.5	53
41	Human Biomolecular Corona of Liposomal Doxorubicin: The Overlooked Factor in Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 22951-22962.	8.0	51
42	Improving the accuracy of pancreatic cancer clinical staging by exploitation of nanoparticle-blood interactions: A pilot study. Pancreatology, 2018, 18, 661-665.	1.1	18
43	In vivo protein corona patterns of lipid nanoparticles. RSC Advances, 2017, 7, 1137-1145.	3.6	59
44	Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells. Colloids and Surfaces B: Biointerfaces, 2017, 153, 263-271.	5.0	86
45	Impact of the biomolecular corona on the structure of PEGylated liposomes. Biomaterials Science, 2017, 5, 1884-1888.	5.4	24
46	Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale, 2017, 9, 10327-10334.	5.6	74
47	Biophysics and protein corona analysis of Janus cyclodextrin-DNA nanocomplexes. Efficient cellular transfection on cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1737-1749.	2.4	16
48	An apolipoprotein-enriched biomolecular corona switches the cellular uptake mechanism and trafficking pathway of lipid nanoparticles. Nanoscale, 2017, 9, 17254-17262.	5.6	73
49	Exploitation of Nanoparticle-Blood Interaction for Biomarker Discovery in Pancreatic Cancer. Journal of the American College of Surgeons, 2017, 225, S133.	0.5	0
50	Manipulation of lipoplex concentration at the cell surface boosts transfection efficiency in hard-to-transfect cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 681-691.	3.3	25
51	A protein corona-enabled blood test for early cancer detection. Nanoscale, 2017, 9, 349-354.	5.6	77
52	The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery. Scientific Reports, 2016, 6, 25879.	3.3	158
53	Exploitation of nanoparticle–protein corona for emerging therapeutic and diagnostic applications. Journal of Materials Chemistry B, 2016, 4, 4376-4381.	5.8	32
54	Nanoparticles-cell association predicted by protein corona fingerprints. Nanoscale, 2016, 8, 12755-12763.	5.6	75

#	Article	IF	CITATIONS
55	Single-cell real-time imaging of transgene expression upon lipofection. Biochemical and Biophysical Research Communications, 2016, 474, 8-14.	2.1	10
56	Exploring Cellular Interactions of Liposomes Using Protein Corona Fingerprints and Physicochemical Properties. ACS Nano, 2016, 10, 3723-3737.	14.6	130
57	What the cell surface does not see: The gene vector under the protein corona. Colloids and Surfaces B: Biointerfaces, 2016, 141, 170-178.	5.0	11
58	The protein corona of circulating PEGylated liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 189-196.	2.6	178
59	Personalized liposome–protein corona in the blood of breast, gastric and pancreatic cancer patients. International Journal of Biochemistry and Cell Biology, 2016, 75, 180-187.	2.8	112
60	Plasmonics Meets Biology through Optics. Nanomaterials, 2015, 5, 1022-1033.	4.1	1
61	Surface chemistry and serum type both determine the nanoparticle–protein corona. Journal of Proteomics, 2015, 119, 209-217.	2.4	75
62	The biomolecular corona of nanoparticles in circulating biological media. Nanoscale, 2015, 7, 13958-13966.	5.6	127
63	Applications of nanomaterials in modern medicine. Rendiconti Lincei, 2015, 26, 231-237.	2.2	5
64	Stealth Effect of Biomolecular Corona on Nanoparticle Uptake by Immune Cells. Langmuir, 2015, 31, 10764-10773.	3.5	102
65	Getting the most from gene delivery by repeated DNA transfections. Applied Physics Letters, 2015, 106, 233701.	3.3	4
66	Killing cancer cells using nanotechnology: novel poly(I:C) loaded liposome–silica hybrid nanoparticles. Journal of Materials Chemistry B, 2015, 3, 7408-7416.	5.8	30
67	Photo-thermal effects in gold nanorods/DNA complexes. Micro and Nano Systems Letters, 2015, 3, .	3.7	6
68	Lipid composition: a "key factor―for the rational manipulation of the liposome–protein corona by liposome design. RSC Advances, 2015, 5, 5967-5975.	3.6	77
69	Size and charge of nanoparticles following incubation with human plasma of healthy and pancreatic cancer patients. Colloids and Surfaces B: Biointerfaces, 2014, 123, 673-678.	5.0	59
70	Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: Interplay between nanostructure and composition. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 957-967.	2.6	57
71	Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale, 2014, 6, 2782.	5.6	433
72	Role of cholesterol on the transfection barriers of cationic lipid/DNA complexes. Applied Physics Letters, 2014, 105, .	3.3	5

#	Article	IF	CITATIONS
73	A proteomics-based methodology to investigate the protein corona effect for targeted drug delivery. Molecular BioSystems, 2014, 10, 2815-2819.	2.9	17
74	The liposome–protein corona in mice and humans and its implications for in vivo delivery. Journal of Materials Chemistry B, 2014, 2, 7419-7428.	5.8	85
75	Analytical Methods for Characterizing the Nanoparticle–Protein Corona. Chromatographia, 2014, 77, 755-769.	1.3	58
76	Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	36
77	Structural characterization of cationic liposome/poly(I:C) complexes showing high ability in eliminating prostate cancer cells. RSC Advances, 2013, 3, 24597.	3.6	3
78	Mechanistic Understanding of Gene Delivery Mediated by Highly Efficient Multicomponent Envelope-Type Nanoparticle Systems. Molecular Pharmaceutics, 2013, 10, 4654-4665.	4.6	52
79	Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins. Analytical and Bioanalytical Chemistry, 2013, 405, 635-645.	3.7	26
80	Time Evolution of Nanoparticle–Protein Corona in Human Plasma: Relevance for Targeted Drug Delivery. Langmuir, 2013, 29, 6485-6494.	3.5	248
81	Nanoscale structure of protamine/DNA complexes for gene delivery. Applied Physics Letters, 2013, 102, .	3.3	16
82	Interaction of pH-sensitive non-phospholipid liposomes with cellular mimetic membranes. Biomedical Microdevices, 2013, 15, 299-309.	2.8	22
83	Selective Targeting Capability Acquired with a Protein Corona Adsorbed on the Surface of 1,2-Dioleoyl-3-trimethylammonium Propane/DNA Nanoparticles. ACS Applied Materials & Interfaces, 2013, 5, 13171-13179.	8.0	150
84	The role of cytoskeleton networks on lipid-mediated delivery of DNA. Therapeutic Delivery, 2013, 4, 191-202.	2.2	22
85	Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy. Methods and Applications in Fluorescence, 2013, 1, 015005.	2.3	15
86	Intracellular Trafficking of Lipid Gene Vectors Investigated by Three-Dimensional Single Particle Tracking. Biophysical Journal, 2012, 102, 378a-379a.	0.5	0
87	Do plasma proteins distinguish between liposomes of varying charge density?. Journal of Proteomics, 2012, 75, 1924-1932.	2.4	65
88	Transfection efficiency boost of cholesterol-containing lipoplexes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2335-2343.	2.6	102
89	Intracellular trafficking of cationic liposome–DNA complexes in living cells. Soft Matter, 2012, 8, 7919.	2.7	22
90	Cholesterol-Dependent Macropinocytosis and Endosomal Escape Control the Transfection Efficiency of Lipoplexes in CHO Living Cells. Molecular Pharmaceutics, 2012, 9, 334-340.	4.6	90

#	Article	IF	CITATIONS
91	Evolution of the Protein Corona of Lipid Gene Vectors as a Function of Plasma Concentration. Langmuir, 2011, 27, 15048-15053.	3.5	101
92	Factors Determining the Superior Performance of Lipid/DNA/Protammine Nanoparticles over Lipoplexes. Journal of Medicinal Chemistry, 2011, 54, 4160-4171.	6.4	51
93	Role of temperature-independent lipoplex–cell membrane interactions in the efficiency boost of multicomponent lipoplexes. Cancer Gene Therapy, 2011, 18, 543-552.	4.6	24
94	Differential analysis of "protein corona―profile adsorbed onto different nonviral gene delivery systems. Analytical Biochemistry, 2011, 419, 180-189.	2.4	38
95	Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface. Analytical and Bioanalytical Chemistry, 2011, 401, 1195-1202.	3.7	29
96	Use of EPR and FTIR to detect biological effects of ultrasound and microbubbles on a fibroblast cell line. European Biophysics Journal, 2011, 40, 1115-1120.	2.2	7
97	DNA affects the composition of lipoplex protein corona: A proteomics approach. Proteomics, 2011, 11, 3349-3358.	2.2	30
98	Existence of hybrid structures in cationic liposome/DNA complexes revealed by their interaction with plasma proteins. Colloids and Surfaces B: Biointerfaces, 2011, 82, 141-146.	5.0	41
99	Effect of membrane charge density on the protein corona of cationic liposomes: Interplay between cationic charge and surface area. Applied Physics Letters, 2011, 99, 033702.	3.3	24
100	Programmed packaging of multicomponent envelope-type nanoparticle system for gene delivery. Applied Physics Letters, 2010, 96, .	3.3	5
101	Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer. Analytical and Bioanalytical Chemistry, 2010, 398, 2895-2903.	3.7	38
102	Programmed packaging of multicomponent envelope-type nanoparticle system (MENS). Journal of Controlled Release, 2010, 148, e87-e89.	9.9	2
103	Surface adsorption of protein corona controls the cell uptake mechanism in efficient cationic liposome/DNA complexes in serum. Journal of Controlled Release, 2010, 148, e94-e95.	9.9	2
104	Phase diagram of 3β-[N-(N,N-dimethylaminoethane)-carbamoyl]- cholesterolâ^'dioleoylphosphatidylethanolamine/DNA complexes suggests strategies for efficient lipoplex transfection. Applied Physics Letters, 2010, 96, 183703.	3.3	2
105	Toward an objective evaluation of cell transfection performance. Applied Physics Letters, 2010, 97, 153702.	3.3	0
106	Surface Adsorption of Protein Corona Controls the Cell Internalization Mechanism of Multicomponent Lipoplexes in Serum. Biophysical Journal, 2010, 98, 722a.	0.5	0
107	Effect of Cholesterol on the Formation and Hydration Behavior of Solid-Supported Niosomal Membranes. Langmuir, 2010, 26, 2268-2273.	3.5	42
108	Universality of DNA Adsorption Behavior on the Cationic Membranes of Nanolipoplexes. Journal of Physical Chemistry B, 2010, 114, 2028-2032.	2.6	22

#	Article	IF	CITATIONS
109	Tailoring Lipoplex Composition to the Lipid Composition of Plasma Membrane: A Trojan Horse for Cell Entry?. Langmuir, 2010, 26, 13867-13873.	3.5	43
110	Surface adsorption of protein corona controls the cell internalization mechanism of DC-Chol–DOPE/DNA lipoplexes in serum. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 536-543.	2.6	124
111	Surface area of lipid membranes regulates the DNA-binding capacity of cationic liposomes. Applied Physics Letters, 2009, 94, .	3.3	11
112	A Comparative Study of Axis I Antecedents before Age 18 of Unipolar Depression, Bipolar Disorder and Schizophrenia. Psychopathology, 2009, 42, 325-332.	1.5	41
113	Toward the Rational Design of Lipid Gene Vectors: Shape Coupling between Lipoplex and Anionic Cellular Lipids Controls the Phase Evolution of Lipoplexes and the Efficiency of DNA Release. ACS Applied Materials & Interfaces, 2009, 1, 2237-2249.	8.0	47
114	Structural Stability and Increase in Size Rationalize the Efficiency of Lipoplexes in Serum. Langmuir, 2009, 25, 3013-3021.	3.5	41
115	Effect of hydration on the structure of solid-supported Niosomal membranes investigated by in situ energy dispersive X-ray diffraction. Chemical Physics Letters, 2008, 462, 307-312.	2.6	20
116	Effect of pH on the structure of lipoplexes. Journal of Applied Physics, 2008, 104, 014701.	2.5	6
117	Enhanced Transfection Efficiency of Multicomponent Lipoplexes in the Regime of Optimal Membrane Charge Density. Journal of Physical Chemistry B, 2008, 112, 11298-11304.	2.6	41
118	On the correlation between phase evolution of lipoplexes/anionic lipid mixtures and DNA release. Applied Physics Letters, 2007, 91, 143903.	3.3	8
119	Hydration effect on the structure of dioleoylphosphatidylcholine bilayers. Applied Physics Letters, 2007, 90, 183901.	3.3	13
120	Transfection efficiency boost by designer multicomponent lipoplexes. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2280-2292.	2.6	56
121	Interaction of Lipoplexes with Anionic Lipids Resulting in DNA Release is a Two-Stage Process. Langmuir, 2007, 23, 8713-8717.	3.5	32
122	Structural Stability against Disintegration by Anionic Lipids Rationalizes the Efficiency of Cationic Liposome/DNA Complexes. Langmuir, 2007, 23, 4498-4508.	3.5	45
123	Observation of a Rectangular DNA Superlattice in the Liquid-Crystalline Phase of Cationic Lipid/DNA Complexes. Journal of the American Chemical Society, 2007, 129, 10092-10093.	13.7	17
124	Role of the Spacer Stereochemistry on the Structure of Solid-Supported Gemini Surfactants Aggregates. Langmuir, 2007, 23, 10040-10043.	3.5	9
125	Characterization of solid supported lipoplexes by FTIR microspectroscopy. Infrared Physics and Technology, 2007, 50, 14-20.	2.9	11
126	DNA release from cationic liposome/DNA complexes by anionic lipids. Applied Physics Letters, 2006, 89, 233903.	3.3	13

#	Article	IF	CITATIONS
127	One-Dimensional Thermotropic Dilatation Area of Lipid Headgroups within Lamellar Lipid/DNA Complexes. Langmuir, 2006, 22, 4267-4273.	3.5	23
128	How lipid hydration and temperature affect the structure of DC-Chol–DOPE/DNA lipoplexes. Chemical Physics Letters, 2006, 422, 439-445.	2.6	28
129	Formation of overcharged cationic lipid/DNA complexes. Chemical Physics Letters, 2006, 429, 250-254.	2.6	15
130	Anelastic spectroscopy as a probe of dynamic properties in lipid membranes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 375-378.	5.6	1
131	Is the formation of cationic lipid-DNA complexes a thermodynamically driven phenomenon? Structure and phase behavior of DC-Chol/DNA complexes say not. Applied Physics Letters, 2006, 89, 043901.	3.3	6
132	Two-Dimensional Lipid Mixing Entropy Regulates the Formation of Multicomponent Lipoplexes. Journal of Physical Chemistry B, 2006, 110, 20829-20835.	2.6	17
133	Haem conformation of amphibian nytrosylhaemoglobins detected by XANES spectroscopy. European Physical Journal E, 2005, 16, 373-9.	1.6	Ο
134	Lipid mixing upon deoxyribonucleic acid-induced liposomes fusion investigated by synchrotron small-angle x-ray scattering. Applied Physics Letters, 2005, 87, 133901.	3.3	33
135	Dynamic Properties of an Oriented Lipid/DNA Complex Studied by Neutron Scattering. Biophysical Journal, 2005, 88, 1081-1090.	0.5	25
136	Multicomponent Cationic Lipidâ^'DNA Complex Formation:Â Role of Lipid Mixing. Langmuir, 2005, 21, 11582-11587.	3.5	65
137	X-ray and neutron reflectivity study of solid-supported lipid membranes prepared by spin coating. Journal of Applied Physics, 2004, 96, 6839-6844.	2.5	29
138	Dynamical properties of oriented lipid membranes studied by elastic incoherent neutron scattering. Physica B: Condensed Matter, 2004, 350, E955-E958.	2.7	1
139	Correlation between structure and transfection efficiency: a study of DC-Cholâ^DOPE/DNA complexes. Colloids and Surfaces B: Biointerfaces, 2004, 36, 43-48.	5.0	57
140	Structural characterization of a new lipid/DNA complex showing a selective transfection efficiency in ovarian cancer cells. European Physical Journal E, 2003, 10, 331-336.	1.6	39
141	Dynamics of liposomes gene vectors studied by anelastic spectroscopy. Applied Physics Letters, 2003, 83, 2701-2703.	3.3	7
142	Protofibrils within fibrin fibres are packed together in a regular array. Thrombosis and Haemostasis, 2003, 89, 632-636.	3.4	24
143	Changes in protein dynamics induced under Gdn-HCl denaturation. Applied Physics A: Materials Science and Processing, 2002, 74, s1579-s1581.	2.3	3
144	Self-assembly of cationic liposomes–DNA complexes: a structural and thermodynamic study by EDXD. Chemical Physics Letters, 2002, 351, 222-228.	2.6	36

#	Article	IF	CITATIONS
145	Charge and pH Effect on the Early Events of Epstein-Barr Virus Fusion with Lymphoblastoid Cells (Raji). Intervirology, 1992, 33, 173-179.	2.8	7