James F Conway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5545172/publications.pdf

Version: 2024-02-01

38660 54797 7,935 126 50 84 citations h-index g-index papers 141 141 141 6834 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature, 1997, 386, 91-94.	13.7	453
2	Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nature Structural and Molecular Biology, 2009, 16, 380-389.	3.6	384
3	Dimorphism of Hepatitis B Virus Capsids Is Strongly Influenced by the C-Terminus of the Capsid Protein. Biochemistry, 1996, 35, 7412-7421.	1.2	263
4	Molecular Tectonic Model of Virus Structural Transitions: the Putative Cell Entry States of Poliovirus. Journal of Virology, 2000, 74, 1342-1354.	1.5	224
5	Virus Maturation Involving Large Subunit Rotations and Local Refolding. Science, 2001, 292, 744-748.	6.0	184
6	Intermediate filament structure: 3. Analysis of sequence homologies. International Journal of Biological Macromolecules, 1988, 10, 79-98.	3.6	177
7	Proteolytic and Conformational Control of Virus Capsid Maturation: The Bacteriophage HK97 System. Journal of Molecular Biology, 1995, 253, 86-99.	2.0	177
8	Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14097-14102.	3.3	175
9	Localization of the C terminus of the assembly domain of hepatitis B virus capsid protein: Implications for morphogenesis and organization of encapsidated RNA. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9556-9561.	3.3	164
10	Structural features in the heptad substructure and longer range repeats of two-stranded \hat{l}_{\pm} -fibrous proteins. International Journal of Biological Macromolecules, 1990, 12, 328-334.	3.6	161
11	Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology, 2005, 15, 227-236.	2.6	160
12	Genomic and structural analysis of Syn9, a cyanophage infecting marineProchlorococcusandSynechococcus. Environmental Microbiology, 2007, 9, 1675-1695.	1.8	158
13	Methods for Reconstructing Density Maps of "Single―Particles from Cryoelectron Micrographs to Subnanometer Resolution. Journal of Structural Biology, 1999, 128, 106-118.	1.3	149
14	Novel fold and capsid-binding properties of the lambda-phage display platform protein gpD. Nature Structural Biology, 2000, 7, 230-237.	9.7	140
15	Maturation Dynamics of a Viral Capsid. Cell, 2000, 100, 253-263.	13.5	136
16	A quasi-atomic model of human adenovirus type 5 capsid. EMBO Journal, 2005, 24, 1645-1654.	3.5	130
17	The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. EMBO Journal, 2000, 19, 6317-6325.	3.5	129

Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the) Tj ETQq0 0 0 rgBT /Overlock 10 T 3.3 122

.

United States of America, 1994, 91, 5652-5656.

18

#	Article	IF	CITATIONS
19	An Estimate of the Mean Length of Collagen Fibrils in Rat Tail-Tendon as a Function of age. Connective Tissue Research, 1989, 19, 51-62.	1.1	121
20	The Enterovirus 71 A-particle Forms a Gateway to Allow Genome Release: A CryoEM Study of Picornavirus Uncoating. PLoS Pathogens, 2013, 9, e1003240.	2.1	118
21	The Effects of Radiation Damage on the Structure of Frozen Hydrated HSV-1 Capsids. Journal of Structural Biology, 1993, 111, 222-233.	1.3	115
22	Herpesvirus Capsid Assembly and DNA Packaging. Advances in Anatomy, Embryology and Cell Biology, 2017, 223, 119-142.	1.0	113
23	Filamentous Hemagglutinin of Bordetella pertussis. Journal of Molecular Biology, 1994, 241, 110-124.	2.0	109
24	Bacteriophage T5 Structure Reveals Similarities with HK97 and T4 Suggesting Evolutionary Relationships. Journal of Molecular Biology, 2006, 361, 993-1002.	2.0	107
25	Stoichiometry and Domainal Organization of the Long Tail-fiber of Bacteriophage T4: A Hinged Viral Adhesin. Journal of Molecular Biology, 1996, 260, 767-780.	2.0	96
26	The Herpes Simplex Virus 1 UL17 Protein Is the Second Constituent of the Capsid Vertex-Specific Component Required for DNA Packaging and Retention. Journal of Virology, 2011, 85, 7513-7522.	1.5	95
27	Hepatitis B virus capsid: localization of the putative immunodominant loop (residues 78 to 83) on the capsid surface, and implications for the distinction between c and e-antigens. Journal of Molecular Biology, 1998, 279, 1111-1121.	2.0	87
28	Single-Cell Lymphocyte Heterogeneity in Advanced Cutaneous T-cell Lymphoma Skin Tumors. Clinical Cancer Research, 2019, 25, 4443-4454.	3.2	87
29	Structure, Assembly, and Antigenicity of Hepatitis B Virus Capsid Proteins. Advances in Virus Research, 2005, 64, 125-164.	0.9	83
30	Three-stranded \hat{l} ±-fibrous proteins: the heptad repeat and its implications for structure. International Journal of Biological Macromolecules, 1991, 13, 14-16.	3.6	80
31	The morphogenic linker peptide of HBV capsid protein forms a mobile array on the interior surface. EMBO Journal, 2002, 21, 876-884.	3.5	80
32	Sar1 assembly regulates membrane constriction and ER export. Journal of Cell Biology, 2010, 190, 115-128.	2.3	75
33	Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2737-46.	3.3	74
34	Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex. Journal of Biological Chemistry, 2019, 294, 12380-12391.	1.6	74
35	Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by targeting diverse and conserved epitopes. Nature Communications, 2021, 12, 4676.	5.8	74
36	Characterization of a Conformational Epitope on Hepatitis B Virus Core Antigen and Quasiequivalent Variations in Antibody Binding. Journal of Virology, 2003, 77, 6466-6473.	1.5	72

#	Article	IF	CITATIONS
37	Diversity of core antigen epitopes of hepatitis B virus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10884-10889.	3.3	69
38	Labeling and Localization of the Herpes Simplex Virus Capsid Protein UL25 and Its Interaction with the Two Triplexes Closest to the Penton. Journal of Molecular Biology, 2010, 397, 575-586.	2.0	69
39	Capsids and Genomes of Jumbo-Sized Bacteriophages Reveal the Evolutionary Reach of the HK97 Fold. MBio, 2017, 8, .	1.8	65
40	Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nature Structural and Molecular Biology, 2016, 23, 531-539.	3.6	64
41	Structure of the Mature P3-virus Particle Complex of Cauliflower Mosaic Virus Revealed by Cryo-electron Microscopy. Journal of Molecular Biology, 2005, 346, 267-277.	2.0	63
42	Crosslinking renders bacteriophage HK97 capsid maturation irreversible and effects an essential stabilization. EMBO Journal, 2005, 24, 1352-1363.	3.5	60
43	Capsid Conformational Sampling in HK97 Maturation Visualized by X-Ray Crystallography and Cryo-EM. Structure, 2006, 14, 1655-1665.	1.6	58
44	The A, B, Cs of Herpesvirus Capsids. Viruses, 2015, 7, 899-914.	1.5	57
45	Tetrairidium, a Four-Atom Cluster, Is Readily Visible as a Density Label in Three-Dimensional Cryo-EM Maps of Proteins at 10–25 à Resolution. Journal of Structural Biology, 1999, 127, 169-176.	1.3	56
46	Cryoelectron Microscopy Maps of Human Papillomavirus 16 Reveal L2 Densities and Heparin Binding Site. Structure, 2017, 25, 253-263.	1.6	56
47	Time-resolved molecular dynamics of bacteriophage HK97 capsid maturation interpreted by electron cryo-microscopy and X-ray crystallography. Journal of Structural Biology, 2006, 153, 300-306.	1.3	54
48	A Cryo-Electron Microscopy Study Identifies the Complete H16.V5 Epitope and Reveals Global Conformational Changes Initiated by Binding of the Neutralizing Antibody Fragment. Journal of Virology, 2015, 89, 1428-1438.	1.5	54
49	A Strain-Specific Epitope of Enterovirus 71 Identified by Cryo-Electron Microscopy of the Complex with Fab from Neutralizing Antibody. Journal of Virology, 2013, 87, 11363-11370.	1.5	53
50	Molecular Mechanisms In Bacteriophage T7 Procapsid Assembly, Maturation, And Dna Containment. Advances in Protein Chemistry, 2003, 64, 301-323.	4.4	52
51	Structure and Energetics of Encapsidated DNA in Bacteriophage HK97 Studied by Scanning Calorimetry and Cryo-electron Microscopy. Journal of Molecular Biology, 2009, 391, 471-483.	2.0	52
52	Residues of the UL25 Protein of Herpes Simplex Virus That Are Required for Its Stable Interaction with Capsids. Journal of Virology, 2011, 85, 4875-4887.	1.5	52
53	Spectral signal-to-noise ratio and resolution assessment of 3D reconstructions. Journal of Structural Biology, 2005, 149, 243-255.	1.3	51
54	Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8470-8475.	3.3	51

#	Article	IF	Citations
55	Calcium-induced Folding and Stabilization of the Pseudomonas aeruginosa Alkaline Protease. Journal of Biological Chemistry, 2012, 287, 4311-4322.	1.6	50
56	A Second Symmetry Mismatch at the Portal Vertex of Bacteriophage T7: 8-fold Symmetry in the Procapsid Core. Journal of Molecular Biology, 2003, 327, 1-6.	2.0	49
57	The making and breaking of symmetry in virus capsid assembly: glimpses of capsid biology from cryoelectron microscopy. FASEB Journal, 1997, 11, 733-742.	0.2	48
58	The Short Tail-Fiber of Bacteriophage T4: Molecular Structure and a Mechanism for Its Conformational Transition. Virology, 1993, 194, 117-127.	1.1	47
59	Control of Crosslinking by Quaternary Structure Changes during Bacteriophage HK97 Maturation. Molecular Cell, 2004, 14, 559-569.	4.5	47
60	Structure of the Pseudorabies Virus Capsid: Comparison with Herpes Simplex Virus Type 1 and Differential Binding of Essential Minor Proteins. Journal of Molecular Biology, 2013, 425, 3415-3428.	2.0	47
61	Structural comparison of four different antibodies interacting with human papillomavirus 16 and mechanisms of neutralization. Virology, 2015, 483, 253-263.	1.1	47
62	Digital Image Processing of Electron Micrographs: The PIC System-III. Journal of Structural Biology, 1996, 116, 61-67.	1.3	46
63	The novel asymmetric entry intermediate of a picornavirus captured with nanodiscs. Science Advances, 2016, 2, e1501929.	4.7	46
64	Structure of the Dodecahedral Penton Particle from Human Adenovirus Type 3. Journal of Molecular Biology, 2006, 356, 510-520.	2.0	45
65	A Free Energy Cascade with Locks Drives Assembly and Maturation of Bacteriophage HK97 Capsid. Journal of Molecular Biology, 2006, 364, 512-525.	2.0	45
66	Arabidopsis katanin binds microtubules using a multimeric microtubule-binding domain. Plant Physiology and Biochemistry, 2007, 45, 867-877.	2.8	45
67	Kinetic and Structural Analysis of Coxsackievirus B3 Receptor Interactions and Formation of the A-Particle. Journal of Virology, 2014, 88, 5755-5765.	1.5	42
68	Nuclear lamin proteins: common structures for paracrystalline, filamentous and lattice forms. International Journal of Biological Macromolecules, 1987, 9, 137-145.	3.6	38
69	Visualization of Three-Dimensional Density Maps Reconstructed from Cryoelectron Micrographs of Viral Capsids. Journal of Structural Biology, 1996, 116, 200-208.	1.3	38
70	The mitochondrial permeability transition phenomenon elucidated by cryo-EM reveals the genuine impact of calcium overload on mitochondrial structure and function. Scientific Reports, 2021, 11, 1037.	1.6	38
71	Molecular dynamics of protein complexes from four-dimensional cryo-electron microscopy. Journal of Structural Biology, 2004, 147, 291-301.	1.3	37
72	Shared architecture of bacteriophage SPO1 and herpesvirus capsids. Current Biology, 2006, 16, R11-R13.	1.8	37

#	Article	IF	CITATIONS
73	Structures of the Procapsid and Mature Virion of Enterovirus 71 Strain 1095. Journal of Virology, 2013, 87, 7637-7645.	1.5	37
74	A thermally induced phase transition in a viral capsid transforms the hexamers, leaving the pentamers unchanged. Journal of Structural Biology, 2007, 158, 224-232.	1.3	36
75	Protofilament Structure and Supramolecular Polymorphism of Aggregated Mutant Huntingtin Exon 1. Journal of Molecular Biology, 2020, 432, 4722-4744.	2.0	34
76	Control of Virus Assembly: HK97 "Whiffleball―Mutant Capsids Without Pentons. Journal of Molecular Biology, 2005, 348, 167-182.	2.0	33
77	Virus Capsid Expansion Driven by the Capture of Mobile Surface Loops. Structure, 2008, 16, 1491-1502.	1.6	33
78	Localization of the N terminus of hepatitis B virus capsid protein by peptide-based difference mapping from cryoelectron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14622-14627.	3.3	31
79	<i>In Vitro</i> Assembly of the T=13 Procapsid of Bacteriophage T5 with Its Scaffolding Domain. Journal of Virology, 2010, 84, 9350-9358.	1.5	31
80	The Putative Herpes Simplex Virus 1 Chaperone Protein UL32 Modulates Disulfide Bond Formation during Infection. Journal of Virology, 2015, 89, 443-453.	1.5	31
81	The C Terminus of the Herpes Simplex Virus UL25 Protein Is Required for Release of Viral Genomes from Capsids Bound to Nuclear Pores. Journal of Virology, 2017, 91, .	1.5	30
82	The Enterovirus 71 Procapsid Binds Neutralizing Antibodies and Rescues Virus Infection <i>In Vitro</i> Journal of Virology, 2015, 89, 1900-1908.	1.5	29
83	Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallographica Section D: Structural Biology, 2016, 72, 603-615.	1.1	29
84	Honey Bee Deformed Wing Virus Structures Reveal that Conformational Changes Accompany Genome Release. Journal of Virology, 2017, 91, .	1.5	28
85	Cluster J Mycobacteriophages: Intron Splicing in Capsid and Tail Genes. PLoS ONE, 2013, 8, e69273.	1.1	28
86	Near-Atomic Resolution Structure of a Highly Neutralizing Fab Bound to Canine Parvovirus. Journal of Virology, 2016, 90, 9733-9742.	1.5	27
87	Capsid expansion of bacteriophage T5 revealed by high resolution cryoelectron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21037-21046.	3.3	27
88	Structure of an Insect Parvovirus (Junonia coenia Densovirus) Determined by Cryo-electron Microscopy. Journal of Molecular Biology, 2005, 347, 791-801.	2.0	26
89	CryoTEM study of effects of phosphorylation on the hierarchical assembly of porcine amelogenin and its regulation of mineralization in vitro. Journal of Structural Biology, 2013, 183, 250-257.	1.3	26
90	Epitope Diversity of Hepatitis B Virus Capsids: Quasi-equivalent Variations in Spike Epitopes and Binding of Different Antibodies to the same Epitope. Journal of Molecular Biology, 2006, 355, 562-576.	2.0	25

#	Article	IF	Citations
91	Filling Adeno-Associated Virus Capsids: Estimating Success by Cryo-Electron Microscopy. Human Gene Therapy, 2019, 30, 1449-1460.	1.4	25
92	Shared motifs of the capsid proteins of hepadnaviruses and retroviruses suggest a common evolutionary origin. FEBS Letters, 1998, 431, 301-304.	1.3	23
93	Transmission electron microscopy as a tool for nanocrystal characterization pre- and post-injector. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130322.	1.8	23
94	A packing for A-form DNA in an icosahedral virus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22591-22597.	3.3	23
95	A Two-State Cooperative Expansion Converts the Procapsid Shell of Bacteriophage T5 into a Highly Stable Capsid Isomorphous to the Final Virion Head. Journal of Molecular Biology, 2013, 425, 1999-2014.	2.0	22
96	Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage. Frontiers in Microbiology, 2015, 6, 316.	1.5	22
97	Proteomic profiling of extracellular vesicles released from vascular smooth muscle cells during initiation of phosphate-induced mineralization. Connective Tissue Research, 2018, 59, 55-61.	1.1	22
98	Role of the Propeptide in Controlling Conformation and Assembly State of Hepatitis B Virus e-Antigen. Journal of Molecular Biology, 2011, 409, 202-213.	2.0	21
99	High affinity anchoring of the decoration protein pb10 onto the bacteriophage T5 capsid. Scientific Reports, 2017, 7, 41662.	1.6	21
100	Disulfide Bond Formation Contributes to Herpes Simplex Virus Capsid Stability and Retention of Pentons. Journal of Virology, 2011, 85, 8625-8634.	1.5	20
101	Correct Assembly of the Bacteriophage T5 Procapsid Requires Both the Maturation Protease and the Portal Complex. Journal of Molecular Biology, 2016, 428, 165-181.	2.0	18
102	Mobile Loops and Electrostatic Interactions Maintain the Flexible Tail Tube of Bacteriophage Lambda. Journal of Molecular Biology, 2020, 432, 384-395.	2.0	18
103	The tripartite capsid gene of Salmonella phage Gifsy-2 yields a capsid assembly pathway engaging features from HK97 and λ. Virology, 2010, 402, 355-365.	1.1	15
104	Cryogenic Transmission Electron Microscopy Study of Amelogenin Self-Assembly at Different pH. Cells Tissues Organs, 2011, 194, 166-170.	1.3	15
105	Metastable Intermediates as Stepping Stones on the Maturation Pathways of Viral Capsids. MBio, 2014, 5, e02067.	1.8	13
106	Role of the Herpes Simplex Virus CVSC Proteins at the Capsid Portal Vertex. Journal of Virology, 2020, 94, .	1.5	13
107	Human Kinetochore-associated Kinesin CENP-E Visualized at 17ÂÃ Resolution Bound to Microtubules. Journal of Molecular Biology, 2006, 362, 203-211.	2.0	12
108	Cryo-EM maps reveal five-fold channel structures and their modification by gatekeeper mutations in the parvovirus minute virus of mice (MVM) capsid. Virology, 2017, 510, 216-223.	1.1	12

#	Article	IF	CITATIONS
109	High-resolution asymmetric structure of a Fab–virus complex reveals overlap with the receptor binding site. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2025452118.	3.3	12
110	Development of the dodecahedral penton particle from adenovirus 3 for therapeutic application. Journal of General Virology, 2006, 87, 2901-2905.	1.3	11
111	High-Resolution Structure Analysis of Antibody V5 and U4 Conformational Epitopes on Human Papillomavirus 16. Viruses, 2017, 9, 374.	1.5	11
112	Parallel computing strategies for determining viral capsid structure by cryoelectron microscopy. IEEE Computational Science and Engineering, 1998, 5, 76-91.	0.6	10
113	Cryo-transmission electron microscopy of Ag nanoparticles grown on an ionic liquid substrate. Journal of Materials Research, 2010, 25, 1264-1271.	1.2	6
114	Inducible Polymerization and Two-Dimensional Assembly of the Repeats-in-Toxin (RTX) Domain from the Pseudomonas aeruginosa Alkaline Protease. Biochemistry, 2014, 53, 6452-6462.	1,2	6
115	The Apical Region of the Herpes Simplex Virus Major Capsid Protein Promotes Capsid Maturation. Journal of Virology, 2018, 92, .	1.5	4
116	Asymmetric EM Reveals New Twists in Phage ϕ29 Biology. Structure, 2008, 16, 831-832.	1.6	3
117	Should Virus Capsids Assemble Perfectly? Theory and Observation of Defects. Biophysical Journal, 2020, 119, 1781-1790.	0.2	3
118	Shared architecture of bacteriophage SPO1 and herpesvirus capsids. Current Biology, 2006, 16, 440.	1.8	2
119	Structure and Spatial Organisation of Intermediate Filament and Nuclear Lamin Molecules. Springer Series in Biophysics, 1989, , 140-149.	0.4	1
120	Prohead Perestroika: Bacteriophage T7 Capsid Before and After Maturation. Microscopy and Microanalysis, 1997, 3, 93-94.	0.2	0
121	Proteolytic Control of Bacteriophage HK97 Capsid Maturation Microscopy and Microanalysis, 1998, 4, 984-985.	0.2	0
122	Vive La Diff \tilde{A} @rence! Mapping Macromolecular Complexes by Generalized Difference Imaging. Microscopy and Microanalysis, 2000, 6, 252-253.	0.2	0
123	Macro Molecular Dynamics by Multiple Particle Analysis: Classifying Distinct Conformational States by Generalized Projection Matching. Microscopy and Microanalysis, 2004, 10, 30-31.	0.2	0
124	Linkage Between Proteolysis and Conformational Change in Virus Assembly: Insights from Cryo-Electron Microscopy. Microscopy and Microanalysis, 2006, 12, 396-397.	0.2	0
125	Cryo-TEM Study on Hierarchical Self-assembly of Amelogenin and Regulation of Biomineralization at the Nanoscale. Microscopy and Microanalysis, 2012, 18, 1588-1589.	0.2	0
126	A Novel Packing for A-Form DNA in an Icosahedral Virus. Biophysical Journal, 2020, 118, 295a.	0.2	0