Eugene W Myers

List of Publications by Citations

Source: https://exaly.com/author-pdf/5544836/eugene-w-myers-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85,695 65 56 27 h-index g-index citations papers 96,932 65 7.18 19.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
56	Basic local alignment search tool. <i>Journal of Molecular Biology</i> , 1990 , 215, 403-10	6.5	65807
55	The sequence of the human genome. <i>Science</i> , 2001 , 291, 1304-51	33.3	10609
54	The genome sequence of Drosophila melanogaster. <i>Science</i> , 2000 , 287, 2185-95	33.3	4857
53	A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. <i>Cell</i> , 2015 , 162, 1066-77	56.2	1388
52	Content-aware image restoration: pushing the limits of fluorescence microscopy. <i>Nature Methods</i> , 2018 , 15, 1090-1097	21.6	369
51	The axolotl genome and the evolution of key tissue formation regulators. <i>Nature</i> , 2018 , 554, 50-55	50.4	279
50	A platform for brain-wide imaging and reconstruction of individual neurons. <i>ELife</i> , 2016 , 5, e10566	8.9	246
49	The fragment assembly string graph. <i>Bioinformatics</i> , 2005 , 21 Suppl 2, ii79-85	7.2	237
48	Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. <i>Nature Methods</i> , 2014 , 11, 951-8	21.6	200
47	Towards complete and error-free genome assemblies of all vertebrate species. <i>Nature</i> , 2021 , 592, 737-	7 4 6.4	161
46	Efficient Bayesian-based multiview deconvolution. <i>Nature Methods</i> , 2014 , 11, 645-8	21.6	154
45	Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. <i>Nature Biotechnology</i> , 2016 , 34, 1267-1278	44.5	142
44	The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. <i>Nature</i> , 2018 , 554, 56-61	50.4	113
43	The complete sequence of a human genome <i>Science</i> , 2022 , 376, 44-53	33.3	107
42	ClearVolume: open-source live 3D visualization for light-sheet microscopy. <i>Nature Methods</i> , 2015 , 12, 480-1	21.6	95
41	Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. <i>Annual Review of Animal Biosciences</i> , 2018 , 6, 23-46	13.7	88
40	Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis. <i>Nature Communications</i> , 2014 , 5, 4342	17.4	87

39	Six reference-quality genomes reveal evolution of bat adaptations. <i>Nature</i> , 2020 , 583, 578-584	50.4	73
38	A tunable refractive index matching medium for live imaging cells, tissues and model organisms. <i>ELife</i> , 2017 , 6,	8.9	66
37	The complete sequence of a human genome		58
36	Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms. <i>Nature Communications</i> , 2018 , 9, 4620	17.4	58
35	The balance of prickle/spiny-legs isoforms controls the amount of coupling between core and fat PCP systems. <i>Current Biology</i> , 2014 , 24, 2111-2123	6.3	52
34	Cell dynamics underlying oriented growth of the wing imaginal disc. <i>Development (Cambridge)</i> , 2017 , 144, 4406-4421	6.6	46
33	CLIJ: GPU-accelerated image processing for everyone. <i>Nature Methods</i> , 2020 , 17, 5-6	21.6	42
32	Contrasting signatures of genomic divergence during sympatric speciation. <i>Nature</i> , 2020 , 588, 106-111	50.4	41
31	BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies. <i>Neuroinformatics</i> , 2015 , 13, 487-99	3.2	40
30	Towards complete and error-free genome assemblies of all vertebrate species		38
29	Atlas-builder software and the eNeuro atlas: resources for developmental biology and neuroscience. <i>Development (Cambridge)</i> , 2014 , 141, 2524-32	6.6	24
28	Automated detection and quantification of single RNAs at cellular resolution in zebrafish embryos. <i>Development (Cambridge)</i> , 2016 , 143, 540-6	6.6	23
27	PreMosa: extracting 2D surfaces from 3D microscopy mosaics. <i>Bioinformatics</i> , 2017 , 33, 2563-2569	7.2	19
26	Biobeam-Multiplexed wave-optical simulations of light-sheet microscopy. <i>PLoS Computational Biology</i> , 2018 , 14, e1006079	5	19
25	Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. <i>Genome Biology</i> , 2021 , 22, 120	18.3	19
24	The Earth BioGenome Project 2020: Starting the clock <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	15
23	Non Hybrid Long Read Consensus Using Local De Bruijn Graph Assembly		15
22	Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy		13

21	Rapid and ongoing evolution of repetitive sequence structures in human centromeres. <i>Science Advances</i> , 2020 , 6,	14.3	11
20	AUTOMATIC SEGMENTATION OF NUCLEI IN 3D MICROSCOPY IMAGES OF C.ELEGANS 2007,		11
19	Merfin: improved variant filtering and polishing via k-mer validation		10
18	Rod nuclear architecture determines contrast transmission of the retina and behavioral sensitivity in mice. <i>ELife</i> , 2019 , 8,	8.9	9
17	Moral Lineage Tracing 2016 ,		7
16	3D Neuron Tip Detection in Volumetric Microscopy Images 2011 ,		6
15	Efficient Algorithms for Moral Lineage Tracing 2017 ,		5
14	Complete vertebrate mitogenomes reveal widespread gene duplications and repeats		5
13	Large-scale genome sampling reveals unique immunity and metabolic adaptations in bats. <i>Molecular Ecology</i> , 2021 , 30, 6449-6467	5.7	5
12	EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. <i>Cell</i> , 2021 ,	56.2	5
11	Standards recommendations for the Earth BioGenome Project <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	4
10	Interactive design of GPU-accelerated Image Data Flow Graphs and cross-platform deployment using multi-lingual code generation		4
9	Merfin: improved variant filtering, assembly evaluation and polishing via k-mer validation <i>Nature Methods</i> , 2022 ,	21.6	3
8	Multi-scale coordination of planar cell polarity in planarians		1
7	CLIJ: GPU-accelerated image processing for everyone		1
6	Long-read Data Revealed Structural Diversity in Human Centromere Sequences		1
5	Expansion-Assisted Iterative-FISH defines lateral hypothalamus spatio-molecular organization		1
4	DENTIST-using long reads for closing assembly gaps at high accuracy <i>GigaScience</i> , 2022 , 11,	7.6	1

LIST OF PUBLICATIONS

3	Contradictory Phylogenetic Signals in the Laurasiatheria Anomaly Zone. <i>Genes</i> , 2022 , 13, 766	4.2	1
2	Constructing 5D developing gene expression patterns without live animal imaging. <i>Biomedical Engineering Letters</i> , 2014 , 4, 338-346	3.6	O
1	Finding long tandem repeats in long noisy reads. <i>Bioinformatics</i> , 2021 , 37, 612-621	7.2	0