
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5544391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic regulation of BAF60A determines efficiency of miniature swine iPSC generation. Scientific Reports, 2022, 12, .	3.3	3
2	Bi-component T2 mapping correlates with articular cartilage material properties. Journal of Biomechanics, 2021, 116, 110215.	2.1	2
3	Collagen and chondroitin sulfate functionalized bioinspired fibers for tendon tissue engineering application. International Journal of Biological Macromolecules, 2021, 170, 248-260.	7.5	31
4	Editorial: Extracellular Vesicle Treatment, Epigenetic Modification and Cell Reprogramming to Promote Bone and Cartilage Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 678014.	4.1	0
5	Comparative evaluation of isogenic mesodermal and ectomesodermal chondrocytes from human iPSCs for cartilage regeneration. Science Advances, 2021, 7, .	10.3	17
6	Reprogrammed Synovial Fluid-Derived Mesenchymal Stem/Stromal Cells Acquire Enhanced Therapeutic Potential for Articular Cartilage Repair. Cartilage, 2021, 13, 530S-543S.	2.7	7
7	CATA6 regulates aging of human mesenchymal stem/stromal cells. Stem Cells, 2021, 39, 62-77.	3.2	2
8	GATA6 regulates aging of human mesenchymal stem/stromal cells. Stem Cells, 2021, 39, 62-77.	3.2	22
9	Endothelin-1 reduces catabolic activity of human mesenchymal stem/stromal cells during chondro- and osteo-lineage differentiation. Biochemical and Biophysical Research Communications, 2020, 529, 180-185.	2.1	4
10	Endothelinâ€1 differentially directs lineage specification of adipose―and bone marrow–derived mesenchymal stem cells. FASEB Journal, 2019, 33, 996-1007.	0.5	25
11	Tendon-to-Bone Healing in a Rat Extra-articular Bone Tunnel Model: A Comparison of Fresh Autologous Bone Marrow and Bone Marrow–Derived Mesenchymal Stem Cells. American Journal of Sports Medicine, 2019, 47, 2729-2736.	4.2	23
12	Emerging opportunities for induced pluripotent stem cells in orthopaedics. Journal of Orthopaedic Translation, 2019, 17, 73-81.	3.9	11
13	Human pluripotent stem cell–derived brain pericyte–like cells induce blood-brain barrier properties. Science Advances, 2019, 5, eaau7375.	10.3	135
14	Bone Morphogenetic Protein-6 Attenuates Type 1 Diabetes Mellitus-Associated Bone Loss. Stem Cells Translational Medicine, 2019, 8, 522-534.	3.3	16
15	Endogenous biological factors modulated by substrate stiffness regulate endothelial differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2018, 106, 1595-1603.	4.0	11
16	Chondrogenesis of Embryonic Stem Cellâ€Derived Mesenchymal Stem Cells Induced by TGFβ1 and BMP7 Through Increased TGFβ Receptor Expression and Endogenous TGFβ1 Production. Journal of Cellular Biochemistry, 2017, 118, 172-181.	2.6	23
17	Identification of Bone Marrow-Derived Soluble Factors Regulating Human Mesenchymal Stem Cells for Bone Regeneration. Stem Cell Reports, 2017, 8, 387-400.	4.8	38
18	Mechano-Signal Transduction in Mesenchymal Stem Cells Induces Prosaposin Secretion to Drive the Proliferation of Breast Cancer Cells. Cancer Research, 2017, 77, 6179-6189.	0.9	68

#	Article	IF	CITATIONS
19	Strategies to retain properties of bone marrow–derived mesenchymal stem cells <i>ex vivo</i> . Annals of the New York Academy of Sciences, 2017, 1409, 3-17.	3.8	36
20	Abstract 5904: Stiffness of extracellular matrix regulates breast cancer progression by stimulating mesenchymal stem cells. , 2017, , .		0
21	A newly identified mechanism involved in regulation of human mesenchymal stem cells by fibrous substrate stiffness. Acta Biomaterialia, 2016, 42, 247-257.	8.3	46
22	3D Cell Culture and Microscopy in a Capsule with Scaffolds, Tumors & Stem Cells. Microscopy and Microanalysis, 2016, 22, 998-999.	0.4	1
23	Advanced quantitative imaging and biomechanical analyses of periosteal fibers in accelerated bone growth. Bone, 2016, 92, 201-213.	2.9	5
24	Effects of Elastin-Like Peptide on Regulation of Human Mesenchymal Stem Cell Behavior. Regenerative Engineering and Translational Medicine, 2016, 2, 85-97.	2.9	10
25	Effects of Human Fibroblast-Derived Extracellular Matrix on Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 2016, 12, 560-572.	5.6	18
26	Osteoblastogenesis of Mesenchymal Stem Cells in 3-D Culture Enhanced by Low-Intensity Pulsed Ultrasound through Soluble Receptor Activator of Nuclear Factor Kappa B Ligand. Ultrasound in Medicine and Biology, 2015, 41, 1842-1852.	1.5	14
27	Hierarchically decorated electrospun poly(\$\$ varepsilon \$\$ ε -caprolactone)/nanohydroxyapatite composite nanofibers for bone tissue engineering. Journal of Materials Science, 2015, 50, 4174-4186.	3.7	17
28	Endothelial cells direct human mesenchymal stem cells for osteo- and chondro-lineage differentiation through endothelin-1 and AKT signaling. Stem Cell Research and Therapy, 2015, 6, 88.	5.5	43
29	Endogenously Produced Indian Hedgehog Regulates TGFβ-Driven Chondrogenesis of Human Bone Marrow Stromal/Stem Cells. Stem Cells and Development, 2015, 24, 995-1007.	2.1	18
30	Tissue Stiffness Dictates Development, Homeostasis, and Disease Progression. Organogenesis, 2015, 11, 1-15.	1.2	483
31	Induction of Mesenchymal Stem Cell Chondrogenesis Through Sequential Administration of Growth Factors Within Specific Temporal Windows. Journal of Cellular Physiology, 2014, 229, 162-171.	4.1	34
32	Enhanced Medial Collateral Ligament Healing Using Mesenchymal Stem Cells: Dosage Effects on Cellular Response and Cytokine Profile. Stem Cell Reviews and Reports, 2014, 10, 86-96.	5.6	31
33	Characterization and evaluation of mesenchymal stem cells derived from human embryonic stem cells and bone marrow. Cell and Tissue Research, 2014, 358, 149-164.	2.9	59
34	Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: Effects of polymer properties and particle size. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1434-1444.	3.4	77
35	Macrophage Migration Inhibitory Factor Regulates AKT Signaling in Hypoxic Culture to Modulate Senescence of Human Mesenchymal Stem Cells. Stem Cells and Development, 2014, 23, 852-865.	2.1	55
36	Intervertebral disc and stem cells cocultured in biomimetic extracellular matrix stimulated by cyclic compression in perfusion bioreactor. Spine Journal, 2014, 14, 2127-2140.	1.3	32

#	Article	IF	CITATIONS
37	Tenogenic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells dictated by properties of braided submicron fibrous scaffolds. Biomaterials, 2014, 35, 6907-6917.	11.4	68
38	Adverse effect of demineralized bone powder on osteogenesis of human mesenchymal stem cells. Experimental Cell Research, 2013, 319, 1942-1955.	2.6	5
39	Regulation of mesenchymal stem cell chondrogenesis by glucose through protein kinase C/transforming growth factor signaling. Osteoarthritis and Cartilage, 2013, 21, 368-376.	1.3	39
40	Osteoprotegerin Enhances Osteogenesis of Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2013, 19, 2176-2187.	3.1	21
41	Cartilage and Ligament Tissue Engineering. , 2013, , 1214-1236.		2
42	Braided Nanofibrous Scaffold for Tendon and Ligament Tissue Engineering. Tissue Engineering - Part A, 2013, 19, 1265-1274.	3.1	157
43	Assays for determining cell differentiation in biomaterials. , 2013, , 101-137.		1
44	Stem Cell-based Tissue Engineering Approaches for Musculoskeletal Regeneration. Current Pharmaceutical Design, 2013, 19, 3429-3445.	1.9	50
45	Combinatorial screening of chemically defined human mesenchymal stem cell culture substrates. Journal of Materials Chemistry, 2012, 22, 19474.	6.7	25
46	Fabrication and characterization of injection molded poly (Îμ-caprolactone) and poly (Îμ-caprolactone)/hydroxyapatite scaffolds for tissue engineering. Materials Science and Engineering C, 2012, 32, 1674-1681.	7.3	39
47	Intervertebral Disc Regeneration from Co-cultured Disc and Stem Cells in Biomimetic Engineered Extracellular Matrix Stimulated by Mechanically Active Bioreactor. Spine Journal, 2011, 11, S70-S71.	1.3	0
48	Mechanical Stimulation Provides the Key Induction Signal for Tenogenic Differentiation of Human Mesenchymal Stem Cells in Braided Nanofibrous Scaffolds. , 2011, , .		0
49	Stabilization of Proteins by Nanoencapsulation in Sugar–Glass for Tissue Engineering and Drug Delivery Applications. Advanced Materials, 2011, 23, 4861-4867.	21.0	31
50	Fibrous Scaffolds for Tissue Engineering. , 2011, , 47-73.		11
51	Fibroblast Growth Factor-2 Primes Human Mesenchymal Stem Cells for Enhanced Chondrogenesis. PLoS ONE, 2011, 6, e22887.	2.5	103
52	NANOSTRUCTURED SCAFFOLDS FOR BIOLOGY AND TISSUE ENGINEERING. Nano LIFE, 2010, 01, 109-120.	0.9	1
53	Novel Biomimetic Scaffold for Tendon/Ligament Tissue Engineering. , 2010, , .		0
54	The Effect of Nano Hydroxyapatite Particles on Morphology and Mechanical Properties of		4

The Effect of Nano Hydroxyapatite Particles on Morphology and Mechanical Propertie Microcellular Injection Molded Polylactide/Hydroxyapatite Tissue Scaffold. , 2010, , . 54

#	Article	IF	CITATIONS
55	New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. Expert Review of Medical Devices, 2009, 6, 515-532.	2.8	101
56	Engineering on the Straight and Narrow: The Mechanics of Nanofibrous Assemblies for Fiber-Reinforced Tissue Regeneration. Tissue Engineering - Part B: Reviews, 2009, 15, 171-193.	4.8	188
57	Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. Journal of Orthopaedic Research, 2009, 27, 1169-1174.	2.3	197
58	Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 1-10.	2.7	145
59	Beta4 integrin promotes osteosarcoma metastasis and interacts with ezrin. Oncogene, 2009, 28, 3401-3411.	5.9	66
60	Fabrication and Application of Nanofibrous Scaffolds in Tissue Engineering. Current Protocols in Cell Biology, 2009, 42, Unit 25.2.	2.3	44
61	Microenvironmental Determinants of Stem Cell Fate. , 2009, , 647-663.		0
62	Intervertebral Disc Tissue Engineering Using a Novel Hyaluronic Acid–Nanofibrous Scaffold (HANFS) Amalgam. Tissue Engineering - Part A, 2008, 14, 1527-1537.	3.1	177
63	Mold-Shaped, Nanofiber Scaffold-Based Cartilage Engineering Using Human Mesenchymal Stem Cells and Bioreactor. Journal of Surgical Research, 2008, 149, 47-56.	1.6	80
64	Cell–Nanofiber-Based Cartilage Tissue Engineering Using Improved Cell Seeding, Growth Factor, and Bioreactor Technologies. Tissue Engineering - Part A, 2008, 14, 639-648.	3.1	60
65	In Vitro Adipose Tissue Engineering Using an Electrospun Nanofibrous Scaffold. Annals of Plastic Surgery, 2008, 61, 566-571.	0.9	33
66	Cell-Based Therapies for Musculoskeletal Repair. , 2008, , 888-911.		1
67	Mesenchymal Stem Cells. , 2007, , 823-843.		8
68	Human stem cells, chromatin, and tissue engineering: Boosting relevancy in developmental toxicity testing. Birth Defects Research Part C: Embryo Today Reviews, 2007, 81, 20-40.	3.6	6
69	TGF-β1 calcium signaling in osteoblasts. Journal of Cellular Biochemistry, 2007, 101, 348-359.	2.6	45
70	Nanobiomaterial applications in orthopedics. Journal of Orthopaedic Research, 2007, 25, 11-22.	2.3	316
71	Encapsulated chondrocyte response in a pulsatile flow bioreactor. Acta Biomaterialia, 2007, 3, 13-21.	8.3	24
72	Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. Journal of Biomechanics, 2007, 40, 1686-1693.	2.1	355

#	Article	IF	CITATIONS
73	Adult Mesenchymal Stem Cells: Biological Properties, Characteristics, and Applications in Maxillofacial Surgery. Journal of Oral and Maxillofacial Surgery, 2007, 65, 1640-1647.	1.2	72
74	Suture Fixation of Biodegradable Nanofibrous Poly-Caprolactone Scaffolds to Bovine Meniscus: A Novel Approach to Repairing Meniscal Tears (SS-48). Arthroscopy - Journal of Arthroscopic and Related Surgery, 2006, 22, e24.	2.7	0
75	Chondrocyte Phenotype in Engineered Fibrous Matrix Is Regulated by Fiber Size. Tissue Engineering, 2006, 12, 1775-1785.	4.6	235
76	Cartilage tissue engineering: its potential and uses. Current Opinion in Rheumatology, 2006, 18, 64-73.	4.3	255
77	Minimizing the makespan in a single machine scheduling problem with a time-based learning effect. Information Processing Letters, 2006, 97, 64-67.	0.6	55
78	Fabrication and characterization of six electrospun poly(α-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomaterialia, 2006, 2, 377-385.	8.3	472
79	Evaluation of Nanofiber-based Engineered Cartilage and its Integration with Native Cartilage. MCB Molecular and Cellular Biomechanics, 2006, 3, 175-176.	0.7	0
80	Chondrocyte Phenotype in Engineered Fibrous Matrix Is Regulated by Fiber Size. Tissue Engineering, 2006, .	4.6	0
81	Chondrocyte Phenotype in Engineered Fibrous Matrix Is Regulated by Fiber Size. Tissue Engineering, 2006, .	4.6	0
82	A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 2005, 26, 599-609.	11.4	880
83	Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 2005, 26, 5158-5166.	11.4	596
84	Polymeric Scaffolds for Cartilage Tissue Engineering. Macromolecular Symposia, 2005, 227, 65-76.	0.7	25
85	Electrospun Nanofibrous Scaffolds: Production, Characterization, and Applications for Tissue Engineering and Drug Delivery. Journal of Biomedical Nanotechnology, 2005, 1, 259-275.	1.1	100
86	Human Mesenchymal Progenitor Cell-Based Tissue Engineering of a Single-Unit Osteochondral Construct. Tissue Engineering, 2004, 10, 1169-1179.	4.6	108
87	Biological response of chondrocytes cultured in threeâ€dimensional nanofibrous poly(ϵ aprolactone) scaffolds. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1105-1114.	4.0	483
88	Current state of cartilage tissue engineering. Arthritis Research, 2003, 5, 235.	2.0	182
89	Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research Part B, 2002, 60, 613-621.	3.1	2,134
90	Polymer/Alginate Amalgam for Cartilage―Tissue Engineering. Annals of the New York Academy of Sciences, 2002, 961, 134-138.	3.8	74

#	Article	IF	CITATIONS
91	Three-dimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam. Journal of Biomedical Materials Research Part B, 2001, 57, 394-403.	3.1	174
92	Fiber Based Tissue Engineered Scaffolds for Musculoskeletal Applications: in Vitro Cellular Response. Materials Research Society Symposia Proceedings, 1998, 550, 127.	0.1	4
93	Electrospinning. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 48-78.	0.4	1