
Keith H K Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5543554/publications.pdf Version: 2024-02-01

KEITH H K WONC

#	Article	IF	CITATIONS
1	The Lipogenic Regulator SREBP2 Induces Transferrin in Circulating Melanoma Cells and Suppresses Ferroptosis. Cancer Discovery, 2021, 11, 678-695.	9.4	114
2	Megakaryocytes contain extranuclear histones and may be a source of platelet-associated histones during sepsis. Scientific Reports, 2020, 10, 4621.	3.3	17
3	Design principles for lymphatic drainage of fluid and solutes from collagen scaffolds. Journal of Biomedical Materials Research - Part A, 2018, 106, 106-114.	4.0	24
4	Effect of Ice Nucleation and Cryoprotectants during High Subzero-Preservation in Endothelialized Microchannels. ACS Biomaterials Science and Engineering, 2018, 4, 3006-3015.	5.2	18
5	Trapped Chromatin Fibers Damage Flowing Red Blood Cells. Advanced Biology, 2018, 2, 1800040.	3.0	2
6	Anti-thrombotic strategies for microfluidic blood processing. Lab on A Chip, 2018, 18, 2146-2155.	6.0	8
7	Ultra-fast vitrification of patient-derived circulating tumor cell lines. PLoS ONE, 2018, 13, e0192734.	2.5	9
8	Enhanced Isolation and Release of Circulating Tumor Cells Using Nanoparticle Binding and Ligand Exchange in a Microfluidic Chip. Journal of the American Chemical Society, 2017, 139, 2741-2749.	13.7	226
9	Microfluidic Isolation of Circulating Tumor Cell Clusters by Size and Asymmetry. Scientific Reports, 2017, 7, 2433.	3.3	158
10	A highly-occupied, single-cell trapping microarray for determination of cell membrane permeability. Lab on A Chip, 2017, 17, 4077-4088.	6.0	41
11	Microfluidic isolation of platelet-covered circulating tumor cells. Lab on A Chip, 2017, 17, 3498-3503.	6.0	102
12	Preservative solution that stabilizes erythrocyte morphology and leukocyte viability under ambient conditions. Scientific Reports, 2017, 7, 5658.	3.3	21
13	Whole blood stabilization for the microfluidic isolation and molecular characterization of circulating tumor cells. Nature Communications, 2017, 8, 1733.	12.8	53
14	Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovascular Diagnosis and Therapy, 2017, 7, S140-S149.	1.7	69
15	The Role of Physical Stabilization in Whole Blood Preservation. Scientific Reports, 2016, 6, 21023.	3.3	38
16	Three-Dimensional Blood-Brain Barrier Model for in vitro Studies of Neurovascular Pathology. Scientific Reports, 2015, 5, 15222.	3.3	162
17	Microengineering in cardiovascular research: new developments and translational applications. Cardiovascular Research, 2015, 106, 9-18.	3.8	9
18	Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability. Journal of Biomedical Materials Research - Part A, 2014, 102, 3186-3195.	4.0	51

Keith H K Wong

#	Article	IF	CITATIONS
19	Vascularization of Microfluidic Hydrogels. , 2013, , 205-221.		6
20	Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2181-2190.	4.0	62
21	Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability. Journal of Biomedical Materials Research - Part A, 2013, 102, n/a-n/a.	4.0	1
22	Microfluidic Models of Vascular Functions. Annual Review of Biomedical Engineering, 2012, 14, 205-230.	12.3	208
23	Plasma expanders stabilize human microvessels in microfluidic scaffolds. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1815-1822.	4.0	37
24	The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials, 2010, 31, 4706-4714.	11.4	65
25	Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials, 2010, 31, 6182-6189.	11.4	161