
Sang Jeen Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5542915/publications.pdf Version: 2024-02-01

SANG LEEN HONG

#	Article	IF	CITATIONS
1	IOT-based in situ condition monitoring of semiconductor fabrication equipment for e-maintenance. Journal of Quality in Maintenance Engineering, 2022, 28, 736-747.	1.7	1
2	Virtual Metrology for Etch Profile in Silicon Trench Etching With SFâ,†/Oâ,,/Ar Plasma. IEEE Transactions on Semiconductor Manufacturing, 2022, 35, 128-136.	1.7	11
3	Industrial Internet of Things for Condition Monitoring and Diagnosis of Dry Vacuum Pumps in Atomic Layer Deposition Equipment. Electronics (Switzerland), 2022, 11, 375.	3.1	5
4	Use of Optical Emission Spectroscopy Data for Fault Detection of Mass Flow Controller in Plasma Etch Equipment. Electronics (Switzerland), 2022, 11, 253.	3.1	10
5	Machine Learning-Based Process-Level Fault Detection and Part-Level Fault Classification in Semiconductor Etch Equipment. IEEE Transactions on Semiconductor Manufacturing, 2022, 35, 174-185.	1.7	9
6	On-Wafer Temperature Monitoring Sensor for Condition Monitoring of Repaired Electrostatic Chuck. Electronics (Switzerland), 2022, 11, 880.	3.1	8
7	HARDWARE DESIGN FOR CRYOGENIC ETCHING EQUIPMENT. Heat Transfer Research, 2021, 52, 1-14.	1.6	3
8	Surface Analysis of TMCTS-Based SiOC(H) Low-k Dielectrics in Post-Etch Strip of ACL Hardmask. Materials, 2021, 14, 1144.	2.9	0
9	Surface Analysis of Amorphous Carbon Thin Film for Etch Hard Mask. Journal of Nanoscience and Nanotechnology, 2021, 21, 2032-2038.	0.9	8
10	Artificial Immune System for Fault Detection and Classification of Semiconductor Equipment. Electronics (Switzerland), 2021, 10, 944.	3.1	17
11	Dual-Frequency RF Impedance Matching Circuits for Semiconductor Plasma Etch Equipment. Electronics (Switzerland), 2021, 10, 2074.	3.1	4
12	Use of Plasma Information in Machine-Learning-Based Fault Detection and Classification for Advanced Equipment Control. IEEE Transactions on Semiconductor Manufacturing, 2021, 34, 408-419.	1.7	16
13	Machine learning-based virtual metrology on film thickness in amorphous carbon layer deposition process. Measurement: Sensors, 2021, 16, 100046.	1.7	12
14	Analysis of optical emission spectroscopy data during silicon etching in SF ₆ /O ₂ /Ar plasma. Plasma Science and Technology, 2021, 23, 125501.	1.5	6
15	Surface Analysis of Chamber Coating Materials Exposed to CF4/O2 Plasma. Coatings, 2021, 11, 105.	2.6	12
16	Fabrication of Planar Heating Chuck Using Nichrome Thin Film as Heating Element for PECVD Equipment. Electronics (Switzerland), 2021, 10, 2535.	3.1	1
17	In-situ process monitoring for eco-friendly chemical vapor deposition chamber cleaning. Journal of the Korean Physical Society, 2021, 79, 1027.	0.7	3
18	Investigation of Structure Modification of Underlying SiCOH Low- <i>k</i> Dielectrics with Subsequent Hardmask Deposition Process Conditions. Science of Advanced Materials, 2021, 13, 2185-2193.	0.7	0

SANG JEEN HONG

#	Article	IF	CITATIONS
19	Kinetic Mechanism of Reactive Oxygen/Nitrogen Species in Plasma-Assisted Greenhouse Gas Replacement. Science of Advanced Materials, 2021, 13, 2227-2233.	0.7	0
20	<i>In-Situ</i> Optical Monitoring of Atmospheric Pressure Plasma During Organic Surface Removal. Science of Advanced Materials, 2021, 13, 2213-2219.	0.7	3
21	Planar heating chuck to improve temperature uniformity of plasma processing equipment. Japanese Journal of Applied Physics, 2020, 59, SJJD01.	1.5	6
22	In situ monitoring of plasma ignition step in capacitively coupled plasma systems. Japanese Journal of Applied Physics, 2020, 59, SJJD02.	1.5	3
23	Deep Neural Network Modeling of Multiple Oxide/Nitride Deposited Dielectric Films for 3D-NAND Flash. Applied Science and Convergence Technology, 2020, 29, 190-194.	0.9	6
24	Performance Evaluation of RF Generators with <i>In-Situ</i> Plasma Process Monitoring Sensors. Journal of Nanoscience and Nanotechnology, 2019, 19, 6499-6505.	0.9	2
25	Surface coupling of plasma optical emission spectra with bent metal-clad waveguide. Optical and Quantum Electronics, 2019, 51, 1.	3.3	0
26	Analysis of Optical Plasma Monitoring in Plasma-Enhanced Atomic Layer Deposition Process of Al2O3. Journal of Nanoscience and Nanotechnology, 2019, 19, 1657-1665.	0.9	1
27	An <i> in situ</i> monitoring method for PECVD process equipment condition. Plasma Science and Technology, 2019, 21, 064003.	1.5	9
28	In-Situ Monitoring of Multiple Oxide/Nitride Dielectric Stack PECVD Deposition Process. Transactions on Electrical and Electronic Materials, 2018, 19, 21-26.	1.9	13
29	Spectroscopic Analysis of Film Stress Mechanism in PECVD Silicon Nitride. Transactions on Electrical and Electronic Materials, 2018, 19, 1-6.	1.9	9
30	Optical in situ monitoring of plasma-enhanced atomic layer deposition process. Japanese Journal of Applied Physics, 2018, 57, 06JF05.	1.5	4
31	In-Situ Detection Method of Abnormal Plasma Discharge in Plasma-Assisted Deposition Processes. Transactions on Electrical and Electronic Materials, 2018, 19, 96-100.	1.9	7
32	Process Integration of Ion Sensitive Field Effect Transistor Bio-Sensor Array Platform. Journal of Nanoscience and Nanotechnology, 2017, 17, 8321-8325.	0.9	0
33	Characterization of Silicon Nitride-Cored Silicon Photonics Waveguide Material for Optical Microring Resonator. Journal of Nanoelectronics and Optoelectronics, 2017, 12, 903-907.	0.5	1
34	Characterization of Plasma Deposited TMCTS Based Low- <i>k</i> Thin Film Deposition Process. Science of Advanced Materials, 2017, 10, 522-526.	0.7	1
35	Optical Emission Spectroscopy of Thermal Ta ₂ O ₅ in SF ₆ /Ar Plasma. Journal of Nanoscience and Nanotechnology, 2016, 16, 12788-12791.	0.9	1
36	Virtual metrology for TSV etch depth measurement using optical emission spectroscopy. , 2015, , .		3

3

SANG JEEN HONG

#	Article	IF	CITATIONS
37	Quantitative Evaluation Method for Etch Sidewall Profile of Through-Silicon Vias (TSVs). ETRI Journal, 2014, 36, 617-624.	2.0	2
38	Endpoint Detection in Low Open Area TSV Fabrication Using Optical Emission Spectroscopy. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4, 1251-1260.	2.5	10
39	In-situ virtual metrology for the silicon-dioxide etch rate by using optical emission spectroscopy data. Journal of the Korean Physical Society, 2014, 65, 168-175.	0.7	5
40	Fault Diagnosis in Semiconductor Etch Equipment Using Bayesian Networks. Journal of Semiconductor Technology and Science, 2014, 14, 252-261.	0.4	20
41	Novel photodefined polymer-clad through-silicon via technology integrated with endpoint detection using optical emission spectroscopy. , 2013, , .		2
42	Endpoint detection using optical emission spectroscopy in TSV fabrication. , 2013, , .		1
43	Hands-on experience-based microelectronics manufacturing engineering education. , 2013, , .		1
44	Optical In-Situ Plasma Process Monitoring Technique for Detection of Abnormal Plasma Discharge. Transactions on Electrical and Electronic Materials, 2013, 14, 71-77.	1.9	7
45	Fault Detection and Classification in Plasma Etch Equipment for Semiconductor Manufacturing \$e\$-Diagnostics. IEEE Transactions on Semiconductor Manufacturing, 2012, 25, 83-93.	1.7	67
46	Real-time In-situ Plasma Etch Process Monitoring for Sensor Based-Advanced Process Control. Journal of Semiconductor Technology and Science, 2011, 11, 1-5.	0.4	4
47	RepTor: An Intelligent Hybrid Neural Network Based Recipe Generator for Semiconductor Process Modeling and Characterization. , 2009, , .		1
48	Improved current drivability with back-gate bias for elevated source and drain structured FD-SOI SiGe MOSFET. Microelectronic Engineering, 2009, 86, 2165-2169.	2.4	1
49	A comparison and analysis of genetic algorithm and particle swarm optimization using neural network models for high efficiency solar cell fabrication processes. , 2009, , .		5
50	Neural-Network-Based Sensor Fusion of Optical Emission and Mass Spectroscopy Data for Real-Time Fault Detection in Reactive Ion Etching. IEEE Transactions on Industrial Electronics, 2005, 52, 1063-1072.	7.9	35
51	Neural Network-Based Real-Time Malfunction Diagnosis of Reactive Ion Etching Using In Situ Metrology Data. IEEE Transactions on Semiconductor Manufacturing, 2004, 17, 408-421.	1.7	42
52	Neural network modeling of reactive ion etching using optical emission spectroscopy data. IEEE Transactions on Semiconductor Manufacturing, 2003, 16, 598-608.	1.7	74
53	Characterization of low-temperature SU-8 photoresist processing for MEMS applications. , 0, , .		1
54	A modular neural network for R2R diagnosis of semiconductor fabrication equipment: a reactive ion etching application. , 0, , .		1

4

#	Article	IF	CITATIONS
55	Chemical reaction mechanism of plasma scrubber for by-product treatment in TiN-atomic layer deposition processes. Japanese Journal of Applied Physics, O, , .	1.5	0