Steven M Short

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5542823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The influence of wastewater pretreatment, attachment material, and inoculation strategy on the growth of target algal species in cultivated biofilms. Journal of Applied Phycology, 2022, 34, 113-125.	2.8	2
2	Analysis of Different Size Fractions Provides a More Complete Perspective of Viral Diversity in a Freshwater Embayment. Applied and Environmental Microbiology, 2021, 87, .	3.1	9
3	Specific quantification of Scenedesmus obliquus and Chlorella vulgaris in mixed-species algal biofilms. Bioresource Technology, 2020, 295, 122251.	9.6	10
4	Environmental DNA from multiple pathogens is elevated near active Atlantic salmon farms. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202010.	2.6	21
5	Dynamic changes in community composition of Scenedesmus-seeded artificial, engineered microalgal biofilms. Algal Research, 2020, 46, 101805.	4.6	13
6	Diversity of Viruses Infecting Eukaryotic Algae. Current Issues in Molecular Biology, 2020, 39, 29-62.	2.4	24
7	Metagenomic Analysis of Virus Diversity and Relative Abundance in a Eutrophic Freshwater Harbour. Viruses, 2019, 11, 792.	3.3	24
8	Genome and Environmental Activity of a Chrysochromulina parva Virus and Its Virophages. Frontiers in Microbiology, 2019, 10, 703.	3.5	41
9	Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions. Viruses, 2018, 10, 487.	3.3	56
10	Methodological review and metaâ€analysis of dilution assays for estimates of virus―and grazerâ€mediated phytoplankton mortality. Limnology and Oceanography: Methods, 2018, 16, 649-668.	2.0	11
11	Algal viruses and cyanophages have distinct distributions in Lake Erie sediments. Aquatic Microbial Ecology, 2018, 82, 161-175.	1.8	2
12	The influence of viruses on phytoplankton and bacterial productivity in Hamilton Harbour, an impaired embayment of Lake Ontario. Journal of Great Lakes Research, 2017, 43, 1055-1066.	1.9	1
13	Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond. ISME Journal, 2016, 10, 1602-1612.	9.8	25
14	Potential viral stimulation of primary production observed during experimental determinations of phytoplankton mortality. Aquatic Microbial Ecology, 2014, 71, 239-256.	1.8	11
15	Complex seasonality observed amongst diverse phytoplankton viruses in the <scp>B</scp> ay of <scp>Q</scp> uinte, an embayment of <scp>L</scp> ake <scp>O</scp> ntario. Freshwater Biology, 2013, 58, 2648-2663.	2.4	20
16	Evidence for a Common Toolbox Based on Necrotrophy in a Fungal Lineage Spanning Necrotrophs, Biotrophs, Endophytes, Host Generalists and Specialists. PLoS ONE, 2012, 7, e29943.	2.5	88
17	Contrasting Community versus Population-Based Estimates of Grazing and Virus-Induced Mortality of Phytoplankton. Microbial Ecology, 2012, 64, 25-38.	2.8	14
18	The ecology of viruses that infect eukaryotic algae. Environmental Microbiology, 2012, 14, 2253-2271.	3.8	110

STEVEN M SHORT

#	Article	IF	CITATIONS
19	Quantification of virus genes provides evidence for seed-bank populations of phycodnaviruses in Lake Ontario, Canada. ISME Journal, 2011, 5, 810-821.	9.8	33
20	Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria. Journal of Plankton Research, 2011, 33, 1465-1476.	1.8	66
21	Physiological characterization and light response of the CO2-concentrating mechanism in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696. Photosynthesis Research, 2011, 109, 85-101.	2.9	13
22	Novel phycodnavirus genes amplified from Canadian freshwater environments. Aquatic Microbial Ecology, 2011, 63, 61-67.	1.8	18
23	Quantitative PCR reveals transient and persistent algal viruses in Lake Ontario, Canada. Environmental Microbiology, 2009, 11, 2639-2648.	3.8	23
24	Diversity of algal viruses in various North American freshwater environments. Aquatic Microbial Ecology, 2008, 51, 13-21.	1.8	43
25	Nitrogenase gene expression in the Chesapeake Bay Estuary. Environmental Microbiology, 2007, 9, 1591-1596.	3.8	64
26	Characterization of cyanobacterial glnA gene diversity and gene expression in marine environments. FEMS Microbiology Ecology, 2006, 55, 391-402.	2.7	8
27	Quantitative Analysis of nifH Genes and Transcripts from Aquatic Environments. Methods in Enzymology, 2005, 397, 380-394.	1.0	41
28	Fingerprinting Diazotroph Communities in the Chesapeake Bay by Using a DNA Macroarray. Applied and Environmental Microbiology, 2004, 70, 1767-1776.	3.1	82
29	Isolation and Phylogenetic Analysis of Novel Viruses Infecting the Phytoplankton Phaeocystis globosa (Prymnesiophyceae). Applied and Environmental Microbiology, 2004, 70, 3700-3705.	3.1	83
30	Spatial and Temporal Distribution of Two Diazotrophic Bacteria in the Chesapeake Bay. Applied and Environmental Microbiology, 2004, 70, 2186-2192.	3.1	67
31	The use of degenerate-primed random amplification of polymorphic DNA (DP-RAPD) for strain-typing and inferring the genetic similarity among closely related viruses. Journal of Virological Methods, 2004, 118, 95-100.	2.1	24
32	The Physical Environment Affects Cyanophage Communities in British Columbia Inlets. Microbial Ecology, 2003, 46, 348-357.	2.8	56
33	Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environmental Microbiology, 2003, 5, 539-554.	3.8	844
34	Temporal dynamics of natural communities of marine algal viruses and eukaryotes. Aquatic Microbial Ecology, 2003, 32, 107-119.	1.8	48
35	Sequence Analysis of Marine Virus Communities Reveals that Groups of Related Algal Viruses Are Widely Distributed in Nature. Applied and Environmental Microbiology, 2002, 68, 1290-1296.	3.1	135
36	DNA polymerase gene sequences indicate western and forest tent caterpillar viruses form a new taxonomic group within baculoviruses. Journal of Invertebrate Pathology, 2002, 81, 131-147.	3.2	5

#	Article	IF	CITATIONS
37	Denaturing Gradient Gel Electrophoresis Resolves Virus Sequences Amplified with Degenerate Primers. BioTechniques, 2000, 28, 20-26.	1.8	16
38	Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Applied and Environmental Microbiology, 1996, 62, 2869-2874.	3.1	141