Ke Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5542749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and properties of <scp>PBAT</scp> / <scp>PLA</scp> composites modified by <scp>PVA</scp> and cellulose nanocrystals. Journal of Applied Polymer Science, 2022, 139, 51474.	2.6	9
2	Fabrication and the barrier characterization of the cellulose nanofibers/organic montmorillonite/poly lactic acid nanocomposites. Journal of Applied Polymer Science, 2022, 139, 51827.	2.6	4
3	Long-chain alkanes in the atmosphere: A review. Journal of Environmental Sciences, 2022, 114, 37-52.	6.1	15
4	Reactions of C ₁₂ –C ₁₄ <i>n</i> Alkylcyclohexanes with Cl Atoms: Kinetics and Secondary Organic Aerosol Formation. Environmental Science & Technology, 2022, 56, 4859-4870.	10.0	7
5	One-Pot Preparation of Benzotriazole-Modified Porous Silica for Durable UVA Absorption Ability. ACS Omega, 2022, 7, 1113-1120.	3.5	2
6	Volatility of Cl-Initiated C ₁₂ –C ₁₄ <i>n</i> -Alkylcyclohexane Secondary Organic Aerosol: Effects of NO _{<i>x</i>} and Photoaging. ACS Earth and Space Chemistry, 2022, 6, 1345-1357.	2.7	1
7	Rapid and Green Fabrication of Carbon Dots for Cellular Imaging and Anti-Counterfeiting Applications. ACS Omega, 2021, 6, 3232-3237.	3.5	25
8	Chinese Calligraphy Inspired Design of Humidity/Light Dual Responsive Magic Paper. Advanced Materials Technologies, 2021, 6, 2100044.	5.8	12
9	Green Fabrication and Release Mechanisms of pH-Sensitive Chitosan–Ibuprofen Aerogels for Controlled Transdermal Delivery of Ibuprofen. Frontiers in Chemistry, 2021, 9, 767923.	3.6	6
10	Green Production of Biodegradable Mulch Films for Effective Weed Control. ACS Omega, 2021, 6, 32327-32333.	3.5	13
11	A Combined Experimental and Theoretical Study on the Gas Phase Reaction of OH Radicals with Ethyl Propyl Ether. Journal of Physical Chemistry A, 2020, 124, 721-730.	2.5	7
12	Mesoporous silica nanoparticles combined with MoS2 and FITC for fluorescence imaging and photothermal therapy of cancer cells. Journal of Materials Science, 2020, 55, 15263-15274.	3.7	13
13	Mesoporous Carbon Hollow Spheres as Efficient Electrocatalysts for Oxygen Reduction to Hydrogen Peroxide in Neutral Electrolytes. ACS Catalysis, 2020, 10, 7434-7442.	11.2	123
14	Aggregation-induced emission of a 2D protein supramolecular nanofilm with emergent functions. Materials Chemistry Frontiers, 2020, 4, 1256-1267.	5.9	21
15	Hyaluronic acid/lysozyme self-assembled coacervate to promote cutaneous wound healing. Biomaterials Science, 2020, 8, 1702-1710.	5.4	27
16	A facile fabrication strategy for anisotropic photonic crystals using deformable spherical nanoparticles. Nanoscale, 2019, 11, 14147-14154.	5.6	17
17	Multifunctional MoS2 nanosheets with Au NPs grown in situ for synergistic chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110551.	5.0	25
18	Small fluorescent albumin nanoparticles for targeted photothermal therapy via albumin-Binding protein pathways. Colloids and Surfaces B: Biointerfaces, 2019, 181, 696-704.	5.0	7

#	Article	IF	CITATIONS
19	Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence imaging and photothermal therapy of cancer cells. Colloids and Surfaces B: Biointerfaces, 2019, 174, 324-332.	5.0	30
20	PEGylated chitosan nanoparticles with embedded bismuth sulfide for dual-wavelength fluorescent imaging and photothermal therapy. Carbohydrate Polymers, 2018, 184, 445-452.	10.2	39
21	New Method to Determine the Effect of Surface PEGylation on Cellular Uptake Efficiency of Mesoporous Silica Nanoparticles with AlEgens. Macromolecular Chemistry and Physics, 2018, 219, 1800034.	2.2	4
22	Synthesis of Starch-Based Amphiphilic Fluorescent Nanoparticles and Their Application in Biological Imaging. Journal of Nanoscience and Nanotechnology, 2018, 18, 2345-2351.	0.9	5
23	Stiffnessâ€Controlled Thermoresponsive Hydrogels for Cell Harvesting with Sustained Mechanical Memory. Advanced Healthcare Materials, 2017, 6, 1601152.	7.6	22
24	Biocompatible fluorescent polymers from PEGylation of an aggregation-induced emission dye. Dyes and Pigments, 2017, 139, 672-680.	3.7	19
25	Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization. Materials Science and Engineering C, 2017, 80, 404-410.	7.3	10
26	Synthesis of amphiphilic fluorescent copolymers with smart pH sensitivity via RAFT polymerization and their application in cell imaging. Polymer Bulletin, 2017, 74, 4525-4536.	3.3	9
27	Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Materials Chemistry Frontiers, 2017, 1, 807-822.	5.9	118
28	One-pot synthesis of AIE based bismuth sulfide nanotheranostics for fluorescence imaging and photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2017, 160, 297-304.	5.0	25
29	Structural Evolution and Formation Mechanism of the Soft Colloidal Arrays in the Core of PAAm Nanofibers by Electrospun Packing. Langmuir, 2017, 33, 10291-10301.	3.5	8
30	Synthesis of amphiphilic fluorescent polymers via a one-pot combination of multicomponent Hantzsch reaction and RAFT polymerization and their cell imaging applications. Polymer Chemistry, 2017, 8, 4805-4810.	3.9	33
31	Nanoclay cross-linked semi-IPN silk sericin/poly(NIPAm/LMSH) nanocomposite hydrogel: An outstanding antibacterial wound dressing. Materials Science and Engineering C, 2017, 81, 303-313.	7.3	51
32	An amphiphilic fluorescent polymer combining aggregation-induced emission monomer and ε-polylysine for cell imaging. Dyes and Pigments, 2017, 145, 174-180.	3.7	5
33	Synthesis of an injectable, self-healable and dual responsive hydrogel for drug delivery and 3D cell cultivation. Polymer Chemistry, 2017, 8, 537-544.	3.9	93
34	Mussel inspired preparation of functional silica nanocomposites for environmental adsorption applications. Applied Surface Science, 2016, 387, 285-293.	6.1	50
35	Synthesis of Amphiphilic Hyperbranched AlEâ€active Fluorescent Organic Nanoparticles and Their Application in Biological Application. Macromolecular Bioscience, 2016, 16, 223-230.	4.1	28
36	Facile preparation and biological imaging of luminescent polymeric nanoprobes with aggregation-induced emission characteristics through Michael addition reaction. Colloids and Surfaces B: Biointerfaces, 2016, 145, 795-801.	5.0	7

#	Article	IF	CITATIONS
37	Facile synthesis of AIE-active amphiphilic polymers: Self-assembly and biological imaging applications. Materials Science and Engineering C, 2016, 66, 215-220.	7.3	97
38	Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. Chemical Science, 2016, 7, 4741-4747.	7.4	128
39	Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10	Tf 50 662 Td 14
40	One-step preparation of branched PEG functionalized AIE-active luminescent polymeric nanoprobes. Science China Chemistry, 2016, 59, 1003-1009.	8.2	12
41	Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale, 2016, 8, 16819-16840.	5.6	509
42	Aggregation Induced Emission Fluorogens Based Nanotheranostics for Targeted and Imagingâ€Guided Chemoâ€Photothermal Combination Therapy. Small, 2016, 12, 6568-6575.	10.0	53
43	Ring-opening crosslinking PEGylation of an AIE epoxy monomer towards biocompatible fluorescent nanoparticles. Journal of Materials Chemistry B, 2016, 4, 8009-8015.	5.8	18
44	Electrochemical Stimulated Pickering Emulsion for Recycling of Enzyme in Biocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 29203-29207.	8.0	67
45	Enhanced removal capability of kaolin toward methylene blue by mussel-inspired functionalization. Journal of Materials Science, 2016, 51, 8116-8130.	3.7	27
46	Shape Changes and Interaction Mechanism of Escherichia coli Cells Treated with Sericin and Use of a Sericin-Based Hydrogel for Wound Healing. Applied and Environmental Microbiology, 2016, 82, 4663-4672.	3.1	41
47	Thermo- and salt-responsive poly(NIPAm-co-AAc-Brij-58) microgels: adjustable size, stability under salt stimulus, and rapid protein adsorption/desorption. Colloid and Polymer Science, 2016, 294, 617-628.	2.1	11
48	Fabrication and biological imaging application of AIE-active luminescent starch based nanoprobes. Carbohydrate Polymers, 2016, 142, 38-44.	10.2	58
49	Facile synthesis of a multifunctional copolymer via a concurrent RAFT-enzymatic system for theranostic applications. Polymer Chemistry, 2016, 7, 546-552.	3.9	18
50	Nanodiamond based supermolecular nanocomposites: preparation and biocompatibility evaluation. RSC Advances, 2015, 5, 96983-96989.	3.6	14
51	Supermolecular self assembly of AIE-active nanoprobes: fabrication and bioimaging applications. RSC Advances, 2015, 5, 107355-107359.	3.6	15
52	Self-healing anti-corrosion coatings based on polymers of intrinsic microporosity for the protection of aluminum alloy. RSC Advances, 2015, 5, 104451-104457.	3.6	24
53	One-pot synthesis and biological imaging application of an amphiphilic fluorescent copolymer via a combination of RAFT polymerization and Schiff base reaction. Polymer Chemistry, 2015, 6, 2133-2138.	3.9	43
54	Facile Preparation of Biocompatible and Robust Fluorescent Polymeric Nanoparticles via PEGylation and Cross-Linking. ACS Applied Materials & amp; Interfaces, 2015, 7, 4241-4246.	8.0	18

#	Article	lF	CITATIONS
55	CO2-switchable drug release from magneto-polymeric nanohybrids. Polymer Chemistry, 2015, 6, 2319-2326.	3.9	40
56	Surface modification of carbon nanotubes by combination of mussel inspired chemistry and SET-LRP. Polymer Chemistry, 2015, 6, 1786-1792.	3.9	85
57	A novel fluorescent amphiphilic glycopolymer based on a facile combination of isocyanate and glucosamine. Journal of Materials Chemistry C, 2015, 3, 1738-1744.	5.5	22
58	One-pot preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced emission dyes. Colloids and Surfaces B: Biointerfaces, 2015, 126, 273-279.	5.0	23
59	Fluorescent polymeric nanoparticles with ultra-low CMC for cell imaging. Journal of Materials Chemistry B, 2015, 3, 1193-1197.	5.8	20
60	Fabrication of amphiphilic fluorescent polylysine nanoparticles by atom transfer radical polymerization (ATRP) and their application in cell imaging. RSC Advances, 2015, 5, 65884-65889.	3.6	14
61	Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. RSC Advances, 2015, 5, 68430-68438.	3.6	58
62	Preparation of biocompatible and photostable PEGylated red fluorescent nanoparticles for cellular imaging. Polymer Chemistry, 2015, 6, 5891-5898.	3.9	18
63	Fabrication of cross-linked fluorescent polymer nanoparticles and their cell imaging applications. Journal of Materials Chemistry C, 2015, 3, 1854-1860.	5.5	39
64	A rather facile strategy for the fabrication of PEGylated AIE nanoprobes. Polymer Chemistry, 2015, 6, 5288-5294.	3.9	55
65	Bioinspired preparation of thermo-responsive graphene oxide nanocomposites in an aqueous solution. Polymer Chemistry, 2015, 6, 5876-5883.	3.9	62
66	Fluorescent Glycopolymer Nanoparticles Based on Aggregationâ€Induced Emission Dyes: Preparation and Bioimaging Applications. Macromolecular Chemistry and Physics, 2015, 216, 678-684.	2.2	33
67	Toward the development of versatile functionalized carbon nanotubes. RSC Advances, 2015, 5, 38316-38323.	3.6	30
68	Mussel inspired preparation of highly dispersible and biocompatible carbon nanotubes. RSC Advances, 2015, 5, 25329-25336.	3.6	34
69	Preparation of emissive glucose-containing polymer nanoparticles and their cell imaging applications. Polymer Chemistry, 2015, 6, 4455-4461.	3.9	23
70	Marrying mussel inspired chemistry with SET‣RP: A novel strategy for surface functionalization of carbon nanotubes. Journal of Polymer Science Part A, 2015, 53, 1872-1879.	2.3	39
71	A biocompatible cross-linked fluorescent polymer prepared via ring-opening PEGylation of 4-arm PEG-amine, itaconic anhydride, and an AIE monomer. Polymer Chemistry, 2015, 6, 3634-3640.	3.9	30
72	Carbon nanotube based polymer nanocomposites: biomimic preparation and organic dye adsorption applications. RSC Advances, 2015, 5, 82503-82512.	3.6	58

#	Article	IF	CITATIONS
73	Synthesis of amphiphilic fluorescent PEGylated AIE nanoparticles via RAFT polymerization and their cell imaging applications. RSC Advances, 2015, 5, 89472-89477.	3.6	22
74	Fabrication of silica nanoparticle based polymer nanocomposites <i>via</i> a combination of mussel inspired chemistry and SET-LRP. RSC Advances, 2015, 5, 91308-91314.	3.6	15
75	Microorganism inspired hydrogels: fermentation capacity, gelation process and pore-forming mechanism under temperature stimulus. RSC Advances, 2015, 5, 91937-91945.	3.6	7
76	Stimulus responsive cross-linked AIE-active polymeric nanoprobes: fabrication and biological imaging application. Polymer Chemistry, 2015, 6, 8214-8221.	3.9	65
77	Biomimic modification of graphene oxide. New Journal of Chemistry, 2015, 39, 8172-8178.	2.8	33
78	Towards development of a versatile and efficient strategy for fabrication of GO based polymer nanocomposites. Polymer Chemistry, 2015, 6, 7211-7218.	3.9	52
79	Fabrication of photostable PEGylated polymer nanoparticles from AIE monomer and trimethylolpropane triacrylate. RSC Advances, 2015, 5, 75823-75830.	3.6	6
80	Red fluorescent cross-linked glycopolymer nanoparticles based on aggregation induced emission dyes for cell imaging. Polymer Chemistry, 2015, 6, 1360-1366.	3.9	39
81	Amphiphilic fluorescent copolymers via one-pot combination of chemoenzymatic transesterification and RAFT polymerization: synthesis, self-assembly and cell imaging. Polymer Chemistry, 2015, 6, 607-612.	3.9	91
82	Red emissive cross-linked chitosan and their nanoparticles for imaging the nucleoli of living cells. Carbohydrate Polymers, 2014, 102, 699-707.	10.2	47
83	Inorganic/organic small molecular semiconductor self-assembly to functional core–shell nanoarchitectures for ultrasensitive chemiresistors to aniline vapor. Dalton Transactions, 2014, 43, 11542.	3.3	10
84	Inorganic–Organic p-n Heterojunction Nanotree Arrays for a High-Sensitivity Diode Humidity Sensor. ACS Applied Materials & Interfaces, 2013, 5, 5825-5831.	8.0	76
85	Characterization of 2-phenylbenzo[g]quinoxaline derivatives as viscosity-sensitive fluorescent probes. Talanta, 2009, 77, 1795-1799.	5.5	32
86	A chemo-enzymatic synthesis of chiral secondary alcohols bearing sulfur-containing functionality. New Journal of Chemistry, 2009, 33, 972.	2.8	11
87	Structure–activity relationship analysis of a novel necroptosis inhibitor, Necrostatin-5. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1455-1465.	2.2	86