
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5542532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autoantibodies against type I IFNs in patients with Ph-negative myeloproliferative neoplasms. Blood, 2022, 139, 2716-2720.	1.4	3
2	Type I but Not Type II Calreticulin Mutations Activate the IRE1α/XBP1 Pathway of the Unfolded Protein Response to Drive Myeloproliferative Neoplasms. Blood Cancer Discovery, 2022, 3, 298-315.	5.0	12
3	Platelet count predicts driver mutations' co-occurrence in low JAK2 mutated essential thrombocythemia and myelofibrosis. Leukemia, 2021, 35, 1490-1493.	7.2	5
4	Co-mutation pattern, clonal hierarchy, and clone size concur to determine disease phenotype of SRSF2P95-mutated neoplasms. Leukemia, 2021, 35, 2371-2381.	7.2	17
5	Systemic mastocytosis and lymphoplasmacytic lymphoma: an unusual and intriguing form of SM-AHN. Leukemia and Lymphoma, 2021, 62, 1782-1785.	1.3	Ο
6	Gene expression profile correlates with molecular and clinical features in patients with myelofibrosis. Blood Advances, 2021, 5, 1452-1462.	5.2	8
7	Enrichment of Double RUNX1 Mutations in Acute Leukemias of Ambiguous Lineage. Frontiers in Oncology, 2021, 11, 726637.	2.8	3
8	The Genetic Basis of Primary Myelofibrosis and Its Clinical Relevance. International Journal of Molecular Sciences, 2020, 21, 8885.	4.1	13
9	Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning. Blood, 2020, 135, 287-292.	1.4	34
10	Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms. Blood, 2020, 135, 133-144.	1.4	52
11	Second primary malignancies in postpolycythemia vera and postessential thrombocythemia myelofibrosis: A study on 2233 patients. Cancer Medicine, 2019, 8, 4089-4092.	2.8	16
12	Mutational landscape of the transcriptome offers putative targets for immunotherapy of myeloproliferative neoplasms. Blood, 2019, 134, 199-210.	1.4	54
13	Ruxolitinib treatment and risk of Bâ€cell lymphomas in myeloproliferative neoplasms. American Journal of Hematology, 2019, 94, E185-E188.	4.1	26
14	Value of cytogenetic abnormalities in post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a study of the MYSEC project. Haematologica, 2018, 103, e392-e394.	3.5	31
15	Phenotype variability of patients with post polycythemia vera and post essential thrombocythemia myelofibrosis is associated with the time to progression from polycythemia vera and essential thrombocythemia. Leukemia Research, 2018, 69, 100-102.	0.8	13
16	Gender effect on phenotype and genotype in patients with post-polycythemia vera and post-essential thrombocythemia myelofibrosis: results from the MYSEC project. Blood Cancer Journal, 2018, 8, 89.	6.2	13
17	Diagnosis and management of prefibrotic myelofibrosis. Expert Review of Hematology, 2018, 11, 537-545.	2.2	13
18	Clinical significance of somatic mutation in unexplained blood cytopenia. Blood, 2017, 129, 3371-3378.	1.4	379

#	Article	IF	CITATIONS
19	Recommendations for molecular testing in classical Ph1-neg myeloproliferative disorders–A consensus project of the Italian Society of Hematology. Leukemia Research, 2017, 58, 63-72.	0.8	25
20	A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia, 2017, 31, 2726-2731.	7.2	242
21	Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood, 2017, 129, 3227-3236.	1.4	137
22	CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles. Blood Cancer Journal, 2017, 7, 638.	6.2	27
23	Driver mutations' effect in secondary myelofibrosis: an international multicenter study based on 781 patients. Leukemia, 2017, 31, 970-973.	7.2	41
24	Clinical course and outcome of essential thrombocythemia and prefibrotic myelofibrosis according to the revised WHO 2016 diagnostic criteria. Oncotarget, 2017, 8, 101735-101744.	1.8	45
25	Sequential evaluation of <i>CALR</i> mutant burden in patients with myeloproliferative neoplasms. Oncotarget, 2017, 8, 33416-33421.	1.8	7
26	Prognostic impact of bone marrow fibrosis in primary myelofibrosis. A study of the AGIMM group on 490 patients. American Journal of Hematology, 2016, 91, 918-922.	4.1	47
27	Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood, 2016, 127, 325-332.	1.4	228
28	Germline RBBP6 mutations in familial myeloproliferative neoplasms. Blood, 2016, 127, 362-365.	1.4	49
29	LNK mutations in familial myeloproliferative neoplasms. Blood, 2016, 128, 144-145.	1.4	36
30	Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: A study on 359 patients of the AGIMM group. American Journal of Hematology, 2016, 91, 681-686.	4.1	80
31	Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis. International Journal of Cancer, 2016, 138, 1657-1669.	5.1	6
32	Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia, 2016, 30, 431-438.	7.2	216
33	Differences in Clinical and Molecular Characteristics and Outcome in Prefibrotic and Overt Primary Myelofibrosis According to 2016 WHO Criteria. a Study on 639 Patients of the Agimm Group. Blood, 2016, 128, 943-943.	1.4	1
34	Impact of mutational status on pregnancy outcome in patients with essential thrombocytemia. Haematologica, 2015, 100, e443-e445.	3.5	30
35	Allelic imbalance in CALR somatic mutagenesis. Leukemia, 2015, 29, 1431-1435.	7.2	5
36	SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood, 2015, 126, 233-241.	1.4	361

#	Article	lF	CITATIONS
37	Efficacy of ruxolitinib in myeloid neoplasms with PCM1-JAK2 fusion gene. Annals of Hematology, 2015, 94, 1927-1928.	1.8	51
38	Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia, 2015, 29, 66-75.	7.2	122
39	SF3B1 Mutation Is an Independent Predictor of Parenchymal Iron Overload in Myelodysplastic Syndromes. Blood, 2015, 126, 1678-1678.	1.4	4
40	Prognostic Impact of Bone Marrow Fibrosis in Primary Myelofibrosis: A Study of Agimm Group on 540 Patients. Blood, 2015, 126, 351-351.	1.4	1
41	Fusion Gene Detection Using Whole Transcriptome Analysis in Patients with Chronic Myeloproliferative Neoplasms and Secondary Acute Myeloid Leukemia. Blood, 2015, 126, 4093-4093.	1.4	1
42	Whole Exome Sequencing Identifies Novel MPL and JAK2 M utations in Triple Negative Myeloproliferative Neoplasms. Blood, 2015, 126, 606-606.	1.4	1
43	Whole Exome Sequencing Reveals Clonal Evolution of Myeloproliferative Neoplasms to Acute Myeloid Leukemia. Blood, 2015, 126, 1626-1626.	1.4	Ο
44	Common Variation at 6q25.3 (TULP4) Influences Risk for Arterial Thrombosis in Myeloproliferative Neoplasms. Blood, 2015, 126, 4088-4088.	1.4	1
45	The Impact of Driver Mutations of JAK2, Calr, or MPL in Patients with Myelofibrosis Undergoing Hemopoietic Stem Cell Transplantation. Blood, 2015, 126, 5405-5405.	1.4	Ο
46	Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms. American Journal of Hematology, 2014, 89, 1107-1110.	4.1	47
47	Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood, 2014, 124, 1062-1069.	1.4	340
48	A novel germline <i>JAK2</i> mutation in familial myeloproliferative neoplasms. American Journal of Hematology, 2014, 89, 117-118.	4.1	31
49	Cerebral venous thrombosis and myeloproliferative neoplasms: Results from two large databases. Thrombosis Research, 2014, 134, 41-43.	1.7	47
50	CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. Blood, 2014, 123, 2416-2419.	1.4	66
51	JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood, 2014, 123, 1544-1551.	1.4	507
52	The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia, 2014, 28, 1804-1810.	7.2	263
53	miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis. Blood, 2014, 124, e21-e32.	1.4	105
54	Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myeloid neoplasms with	1.4	222

#	Article	IF	CITATIONS
55	Mutation Type As a Major Determinant of Clinical Phenotype in Myeloproliferative Neoplasms Associated with Mutant Calreticulin. Blood, 2014, 124, 3215-3215.	1.4	1
56	Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project. Blood, 2014, 124, 405-405.	1.4	47
57	Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. New England Journal of Medicine, 2013, 369, 2379-2390.	27.0	1,698
58	Mutations and prognosis in primary myelofibrosis. Leukemia, 2013, 27, 1861-1869.	7.2	653
59	Efficacy of Ruxolitinib in Chronic Eosinophilic Leukemia Associated With a <i>PCM1-JAK2</i> Fusion Gene. Journal of Clinical Oncology, 2013, 31, e269-e271.	1.6	47
60	Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. Blood, 2013, 121, 4388-4395.	1.4	83
61	Effect of the Number of Prognostically Relevant Mutated Genes on Survival and Leukemia Progression in Primary Myelofibrosis. Blood, 2013, 122, 104-104.	1.4	3
62	Complex Patterns of Chromosome 11 Aberrations in Myeloid Malignancies Target CBL, MLL, DDB1 and LMO2. PLoS ONE, 2013, 8, e77819.	2.5	9
63	JAK2 (V617F)-Positive Essential Thrombocythemia and Polycythemia Vera Are Different Expressions Of a Genotypic/Phenotypic Continuum. Blood, 2013, 122, 1592-1592.	1.4	1
64	Integrative Analysis Of mRNA/miRNA Expression Profiles Identified JARID2 As a Shared Target Of Deregulated Mirnas In Primary Myelofibrosis. Blood, 2013, 122, 1600-1600.	1.4	0
65	Clinical significance of genetic aberrations in secondary acute myeloid leukemia. American Journal of Hematology, 2012, 87, 1010-1016.	4.1	67
66	COLD-PCR and Innovative Microarray Substrates for Detecting and Genotyping MPL Exon 10 W515 Substitutions. Clinical Chemistry, 2012, 58, 1692-1702.	3.2	9
67	JAK2 GGCC haplotype in MPL mutated myeloproliferative neoplasms. American Journal of Hematology, 2012, 87, 746-747.	4.1	8
68	The JAK2ÂV617F mutation in patients with cerebral venous thrombosis. Journal of Thrombosis and Haemostasis, 2012, 10, 998-1003.	3.8	61
69	Clinical relevance of murine double minute 2 single nucleotide polymorphisms 309 in familial myeloproliferative neoplasm. American Journal of Hematology, 2012, 87, 129-130.	4.1	1
70	Frequent deletions of <i>JARID2</i> in leukemic transformation of chronic myeloid malignancies. American Journal of Hematology, 2012, 87, 245-250.	4.1	107
71	Regulatory Mrna/Microrna Networks in CD34+ Cells From Primary Myelofibrosis Blood, 2012, 120, 2854-2854.	1.4	0
72	Clonal Analysis of SF3B1, JAK2 and MPL in Refractory Anemia with Ring Sideroblasts Associated with Marked Thrombocytosis. Blood, 2012, 120, 172-172.	1.4	0

#	Article	IF	CITATIONS
73	Prognostic Impact of Mutations in a Large Series of Patients with Myelofibrosis. Blood, 2012, 120, 431-431.	1.4	19
74	Efficacy of Ruxolitinib in Chronic Eosinophilic Leukemia Associated with t(8;9)(p22;p24) and PCM1-JAK2 Fusion Gene Blood, 2012, 120, 2833-2833.	1.4	0
75	Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood, 2011, 117, 2813-2816.	1.4	190
76	Increased risk of lymphoid neoplasm in patients with myeloproliferative neoplasm: a study of 1,915 patients. Haematologica, 2011, 96, 454-458.	3.5	65
77	Red blood cell transfusion-dependency implies a poor survival in primary myelofibrosis irrespective of IPSS and DIPSS. Haematologica, 2011, 96, 167-170.	3.5	60
78	The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms. Haematologica, 2011, 96, 367-374.	3.5	67
79	Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms. Haematologica, 2011, 96, 607-611.	3.5	64
80	Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood, 2011, 118, 167-176.	1.4	153
81	Identification of genomic aberrations associated with disease transformation by means of highâ€resolution SNP array analysis in patients with myeloproliferative neoplasm. American Journal of Hematology, 2011, 86, 974-979.	4.1	37
82	Distinct Genetic Lesions Drive Leukemogenesis in Secondary Acute Myeloid Leukemia,. Blood, 2011, 118, 3559-3559.	1.4	15
83	Validation of cytogenetic-based risk stratification in primary myelofibrosis. Blood, 2010, 115, 2719-2720.	1.4	6
84	A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia, 2010, 24, 1574-1579.	7.2	321
85	Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia, 2010, 24, 1290-1298.	7.2	135
86	Molecular remission after allo-SCT in a patient with post-essential thrombocythemia myelofibrosis carrying the MPL (W515A) mutation. Bone Marrow Transplantation, 2010, 45, 798-800.	2.4	9
87	Chromosomal Aberration Network In Myeloproliferative Neoplasms. Blood, 2010, 116, 318-318.	1.4	3
88	Characterization of Chromosome 20q Deletions In Myeloproliferative Neoplasms Using Microarray Karyotyping and Next-Generation Sequencing. Blood, 2010, 116, 4099-4099.	1.4	65
89	Clinical Relevance of Bone Marrow Fibrosis and CD34-Positive Cell Clusters in Primary Myelodysplastic Syndromes. Journal of Clinical Oncology, 2009, 27, 754-762.	1.6	225
90	Blast phase of essential thrombocythemia: A single center study. American Journal of Hematology, 2009, 84, 641-644.	4.1	8

#	Article	IF	CITATIONS
91	Blood p50 evaluation enhances diagnostic definition of isolated erythrocytosis. Journal of Internal Medicine, 2009, 265, 266-274.	6.0	26
92	The â€~GGCC' haplotype of JAK2 confers susceptibility to JAK2 exon 12 mutation-positive polycythemia vera. Leukemia, 2009, 23, 1924-1926.	7.2	68
93	Concordance of assays designed for the quantification of JAK2V617F: a multicenter study. Haematologica, 2009, 94, 38-45.	3.5	82
94	Molecular and clinical features of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Blood, 2009, 114, 3538-3545.	1.4	135
95	Deletions of the Transcription Factor Ikaros in Myeloproliferative Neoplasms at Transformation to Acute Myeloid Leukemia Blood, 2009, 114, 435-435.	1.4	7
96	Bone marrow microvessel density in chronic myeloproliferative disorders: a study of 115 patients with clinicopathological and molecular correlations. British Journal of Haematology, 2008, 140, 162-168.	2.5	60
97	Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood, 2008, 111, 1686-1689.	1.4	264
98	Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica, 2008, 93, 1645-1651.	3.5	241
99	A dynamic prognostic model to predict survival in post–polycythemia vera myelofibrosis. Blood, 2008, 111, 3383-3387.	1.4	108
100	Loss of Heterozygosity of Chromosome 1p34 and High Mutant Allele Burden in Patients with Post-Essential Thrombocythemia Myelofibrosis Carrying Somatic Mutations of MPL. Blood, 2008, 112, 176-176.	1.4	1
101	Familial Chronic Myeloproliferative Disorders: Clinical Phenotype and Evidence of Disease Anticipation. Journal of Clinical Oncology, 2007, 25, 5630-5635.	1.6	130
102	Increased risk of pregnancy complications in patients with essential thrombocythemia carrying the JAK2 (617V>F) mutation. Blood, 2007, 110, 485-489.	1.4	148
103	<i>JAK2</i> (V617F) mutation in healthy individuals. British Journal of Haematology, 2007, 136, 678-679.	2.5	40
104	Several Somatic Mutations of JAK2 Exon 12 Are Found in Patients with a JAK2 (V617F)-Negative Myeloproliferative Disorder That Is Mainly Characterized by Erythrocytosis Blood, 2007, 110, 263-263.	1.4	1
105	Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood, 2006, 107, 3676-3682.	1.4	236
106	Cord blood in vitro expanded CD41+ cells: identification of novel components of megakaryocytopoiesis. Journal of Thrombosis and Haemostasis, 2006, 4, 848-860.	3.8	23
107	Flow cytometry evaluation of erythroid dysplasia in patients with myelodysplastic syndrome. Leukemia, 2006, 20, 549-555.	7.2	118
108	Rap2, but not Rap1 GTPase is expressed in human red blood cells and is involved in vesiculation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 330-335.	4.1	15

#	Article	IF	CITATIONS
109	JAK2 (V617F) as an acquired somatic mutation and a secondary genetic event associated with disease progression in familial myeloproliferative disorders. Cancer, 2006, 107, 2206-2211.	4.1	82
110	Sequential Evaluation of the Proportion of Granulocyte JAK2 (V617F) Mutant Alleles in Chronic Myeloproliferative Disorders Blood, 2006, 108, 2682-2682.	1.4	0
111	Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood, 2005, 106, 3374-3376.	1.4	166
112	Genetic and clinical heterogeneity of ferroportin disease. British Journal of Haematology, 2005, 131, 663-670.	2.5	64
113	PRV-1 and its correlation with treatments and disease status in 210 patients with polycythemia vera and essential thrombocythemia. Leukemia, 2005, 19, 888-889.	7.2	8
114	Clinical significance of neutrophil CD177 mRNA expression in Ph-negative chronic myeloproliferative disorders. British Journal of Haematology, 2004, 126, 650-656.	2.5	36
115	Haematological malignancies in relatives of patients affected with myeloproliferative neoplasms. EJHaem, 0, , .	1.0	Ο