Zoran Ivanovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autophagy Targeting and Hematological Mobilization in FLT3-ITD Acute Myeloid Leukemia Decrease Repopulating Capacity and Relapse by Inducing Apoptosis of Committed Leukemic Cells. Cancers, 2022, 14, 453.	1.7	5
2	Alpha Lipoic-Acid Potentiates Ex Vivo Expansion of Human Steady-State Peripheral Blood Hematopoietic Primitive Cells. Biomolecules, 2022, 12, 431.	1.8	0
3	Regulatory Crosstalk between Physiological Low O2 Concentration and Notch Pathway in Early Erythropoiesis. Biomolecules, 2022, 12, 540.	1.8	0
4	Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia. Cellular and Molecular Immunology, 2021, 18, 1290-1304.	4.8	62
5	α-Tocopherol Attenuates Oxidative Phosphorylation of CD34+ Cells, Enhances Their G0 Phase Fraction and Promotes Hematopoietic Stem and Primitive Progenitor Cell Maintenance. Biomolecules, 2021, 11, 558.	1.8	0
6	α-Tocopherol Acetate Attenuates Mitochondrial Oxygen Consumption and Maintains Primitive Cells within Mesenchymal Stromal Cell Population. Stem Cell Reviews and Reports, 2021, 17, 1390-1405.	1.7	2
7	Characteristics of cells with engraftment capacity within CD34+ cell population upon G-CSF and Plerixafor mobilization. Leukemia, 2020, 34, 3370-3381.	3.3	5
8	Discarded plasma obtained after cord blood volume reduction as an alternative for fetal calf serum in mesenchymal stromal cells cultures. Transfusion, 2020, 60, 1910-1917.	0.8	4
9	Normal Hematopoetic Stem and Progenitor Cells Can Exhibit Metabolic Flexibility Similar to Cancer Cells. Frontiers in Oncology, 2020, 10, 713.	1.3	2
10	Hypoxia/hypercapnia prevents iron-dependent cold injuries in cord blood stem and progenitor cells. Cytotherapy, 2019, 21, 460-467.	0.3	1
11	Bioenergetic Changes Underline Plasticity of Murine Embryonic Stem Cells. Stem Cells, 2019, 37, 463-475.	1.4	4
12	The majority of cells in so-called "mesenchymal stem cell―population are neither stem cells nor progenitors. Transfusion Clinique Et Biologique, 2019, 26, 316-323.	0.2	6
13	Expression of miRNA-210 in human bone marrow-derived mesenchymal stromal cells under oxygen deprivation. Archives of Biological Sciences, 2019, 71, 201-208.	0.2	1
14	Grid-connected converter active and reactive power production maximization with respect to current limitations during grid faults. International Journal of Electrical Power and Energy Systems, 2018, 101, 311-322.	3.3	23
15	Steady state peripheral blood provides cells with functional and metabolic characteristics of real hematopoietic stem cells. Journal of Cellular Physiology, 2018, 233, 338-349.	2.0	8
16	Differentiation of human dendritic cell subsets for immune tolerance induction. Transfusion Clinique Et Biologique, 2018, 25, 90-95.	0.2	14
17	Human amniotic membrane for guided bone regeneration of calvarial defects in mice. Journal of Materials Science: Materials in Medicine, 2018, 29, 78.	1.7	22
18	Repopulating hematopoietic stem cells from steady-state blood before and after <i>ex vivo</i> culture are enriched in the CD34 ⁺ CD133 ⁺ CXCR4 ^{low} fraction. Haematologica, 2018, 103, 1604-1615.	1.7	8

#	Article	IF	CITATIONS
19	Energy Metabolism Rewiring Precedes UVB-Induced Primary Skin Tumor Formation. Cell Reports, 2018, 23, 3621-3634.	2.9	44
20	Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue. Stem Cells and Development, 2017, 26, 554-565.	1.1	29
21	To harness stem cells by manipulation of energetic metabolism. Transfusion Clinique Et Biologique, 2017, 24, 468-471.	0.2	2
22	Stem cell evolutionary paradigm and cell engineering. Transfusion Clinique Et Biologique, 2017, 24, 251-255.	0.2	5
23	A new clinicalâ€scale serumâ€free xenoâ€free medium efficient in ex vivo amplification of mesenchymal stromal cells does not support mesenchymal stem cells. Transfusion, 2017, 57, 433-439.	0.8	13
24	Chronic myeloid leukemia progenitor cells require autophagy when leaving hypoxia-induced quiescence. Oncotarget, 2017, 8, 96984-96992.	0.8	15
25	In Situ Normoxia versus "Hypoxia―, 2016, , 17-21.		1
26	Molecular Basis of "Hypoxic―Signaling, Quiescence, Self-Renewal, and Differentiation in Stem Cells. , 2016, , 115-141.		0
27	Clinical-scale validation of a new efficient procedure for cryopreservation of ex vivo expanded cord blood hematopoietic stem and progenitor cells. Cytotherapy, 2016, 18, 1543-1547.	0.3	6
28	Harnessing Anaerobic Nature of Stem Cells for Use in Regenerative Medicine. , 2016, , 257-286.		0
29	What Entity Could Be Called a Stem Cell?. , 2016, , 3-15.		2
30	Cancer Stem Cell Case and Evolutionary Paradigm. , 2016, , 287-305.		5
31	Other Features Concerning the Analogy "Stem Cells: Primitive Eukaryotes― , 2016, , 235-256.		0
32	Evolutionary Origins of Stemness. , 2016, , 177-209.		1
33	Quiescence/Proliferation Issue and Stem Cell Niche. , 2016, , 73-81.		0
34	Metabolic Peculiarities of the Stem Cell Entity. , 2016, , 83-114.		0
35	Low O2 Concentrations and the Maintenance of Stem Cells Ex Vivo. , 2016, , 39-71.		0
36	Interleukinâ€6 enhances the activity of in vivo longâ€ŧerm reconstituting hematopoietic stem cells in "hypoxicâ€like―expansion cultures ex vivo. Transfusion, 2015, 55, 2684-2691.	0.8	16

#	Article	IF	CITATIONS
37	Ex vivo amplification kinetics of cord blood hematopoietic progenitor cells in one- and two-step hypoxic response-mimicking cultures (HRMC). , 2015, , .		0
38	Concise Review: The Role of Oxygen in Hematopoietic Stem Cell Physiology. Journal of Cellular Physiology, 2015, 230, 1999-2005.	2.0	36
39	Reliability of ROS and RNS detection in hematopoietic stem cells â^ potential issues with probes and target cell population. Journal of Cell Science, 2015, 128, 3849-3860.	1.2	16
40	Neonatal sex and weight influence CD34+ cell concentration in umbilical cord blood but not stromal cell–derived factor 1-3′A polymorphism. Cytotherapy, 2015, 17, 68-72.	0.3	11
41	Hypoxia/Hypercapniaâ€Induced Adaptation Maintains Functional Capacity of Cord Blood Stem and Progenitor Cells at 4°C. Journal of Cellular Physiology, 2014, 229, 2153-2165.	2.0	12
42	A Novel Procedure to Improve Functional Preservation of Hematopoietic Stem and Progenitor Cells in Cord Blood Stored at +4°C Before Cryopreservation. Stem Cells and Development, 2014, 23, 1820-1830.	1.1	7
43	HIF-2α Protects Human Hematopoietic Stem/Progenitors and Acute Myeloid Leukemic Cells from Apoptosis Induced by Endoplasmic Reticulum Stress. Cell Stem Cell, 2013, 13, 549-563.	5.2	163
44	Long-term repopulating hematopoietic stem cells and "side population―in human steady state peripheral blood. Stem Cell Research, 2013, 11, 625-633.	0.3	22
45	Discarded leukoreduction filters: A new source of stem cells for research, cell engineering and therapy?. Stem Cell Research, 2013, 11, 736-742.	0.3	19
46	Functional Stability (at +4°C) of Hematopoietic Stem and Progenitor Cells Amplified Ex Vivo from Cord Blood CD34+ Cells. Cell Transplantation, 2013, 22, 1501-1506.	1.2	5
47	Respect the anaerobic nature of stem cells to exploit their potential in regenerative medicine. Regenerative Medicine, 2013, 8, 677-680.	0.8	19
48	Hypoxia-preconditioned mesenchymal stromal cells improve cardiac function in a swine model of chronic myocardial ischaemia. European Journal of Cardio-thoracic Surgery, 2013, 43, 1050-1057.	0.6	48
49	Cryopreservation of hematopoietic stem and progenitor cells amplified ex vivo from cord blood <scp>CD</scp> 34+ cells. Transfusion, 2013, 53, 2012-2019.	0.8	16
50	Busulfan Administration Flexibility Increases the Applicability of Scid Repopulating Cell Assay in NSG Mouse Model. PLoS ONE, 2013, 8, e74361.	1.1	24
51	Could the difference between normal and malignant stem cells eradicate cancer?. Scripta Medica, 2013, 44, 74-74.	0.0	0
52	Human Umbilical Cord Blood-Derived Very-Small-Embryonic-Like Stem Cells with Maximum Regenerative Potential?. Stem Cells and Development, 2012, 21, 2561-2562.	1.1	5
53	Definitive Setup of Clinical Scale Procedure for Ex Vivo Expansion of Cord Blood Hematopoietic Cells for Transplantation. Cell Transplantation, 2012, 21, 2517-2521.	1.2	18
54	Ex Vivo Expansion of Stem and Progenitor Cells Using Thrombopoietin. Stem Cells and Cancer Stem Cells, 2012, , 345-353.	0.1	4

#	Article	IF	CITATIONS
55	High hydrostatic pressure treatment for the inactivation of Staphylococcus aureus in human blood plasma. New Biotechnology, 2012, 29, 409-414.	2.4	13
56	Combination of low O ₂ concentration and mesenchymal stromal cells during culture of cord blood CD34 ⁺ cells improves the maintenance and proliferative capacity of hematopoietic stem cells. Journal of Cellular Physiology, 2012, 227, 2750-2758.	2.0	46
57	Production of hematopoietic cells from umbilical cord blood stem cells for transfusion purposes: Focus on ex vivo generation of red blood cells. Scripta Medica, 2012, 43, 99-105.	0.0	1
58	Clinical-Scale Cultures of Cord Blood CD34+ Cells to Amplify Committed Progenitors and Maintain Stem Cell Activity. Cell Transplantation, 2011, 20, 1453-1464.	1.2	39
59	Thrombopoietin to replace megakaryocyteâ€derived growth factor: impact on stem and progenitor cells during ex vivo expansion of CD34+ cells mobilized in peripheral blood. Transfusion, 2011, 51, 313-318.	0.8	13
60	Cord (placental) blood storage: extent and functional aspects. Transfusion, 2011, 51, 2044-2045.	0.8	3
61	Very low oxygen concentration (0.1%) reveals two FDCP-Mix cell subpopulations that differ by their cell cycling, differentiation and p27KIP1 expression. Cell Death and Differentiation, 2011, 18, 174-182.	5.0	18
62	Rapid and Sustained Engraftment of a Single Allogeneic Ex-Vivo Expanded Cord Blood Unit (CBU) After Reduced Intensity Conditioning (RIC) in Adults. Preliminary Results of a Prospective Trial. Blood, 2011, 118, 486-486.	0.6	8
63	Ex vivo expansion of hematopoietic cells today. Scripta Medica, 2011, 42, 92-96.	0.0	0
64	Slow-cycling/quiescence balance of hematopoietic stem cells is related to physiological gradient of oxygen. Experimental Hematology, 2010, 38, 847-851.	0.2	87
65	CD34+ cells obtained from "good mobilizers―are more activated and exhibit lower ex vivo expansion efficiency than their counterparts from "poor mobilizers― Transfusion, 2010, 50, 120-127.	0.8	19
66	Obtaining of CD34+ cells from healthy blood donors: development of a rapid and efficient procedure using leukoreduction filters. Transfusion, 2010, 50, 2152-2157.	0.8	15
67	Hypoxia Preconditioned Mesenchymal Stem Cells Improve Vascular and Skeletal Muscle Fiber Regeneration After Ischemia Through a Wnt4-dependent Pathway. Molecular Therapy, 2010, 18, 1545-1552.	3.7	156
68	Hematopoietic stem cells in research and clinical applications: The "CD34 issueâ€: World Journal of Stem Cells, 2010, 2, 18.	1.3	27
69	Low O2 concentrations enhance theÂpositive effect ofÂlL-17 onÂtheÂmaintenance ofÂerythroid progenitors during co-culture ofÂCD34+ andÂmesenchymal stem cells. European Cytokine Network, 2009, 20, 010-016.	1.1	15
70	Physiological, exÂvivo cell oxygenation is necessary forÂaÂtrue insight into cytokine biology. European Cytokine Network, 2009, 20, 007-009.	1.1	10
71	Low oxygen concentration as a general physiologic regulator of erythropoiesis beyond the EPO-related downstream tuning and a tool for the optimization of red blood cell production ex vivo. Experimental Hematology, 2009, 37, 573-584.	0.2	55
72	Hypoxia or in situ normoxia: The stem cell paradigm. Journal of Cellular Physiology, 2009, 219, 271-275.	2.0	326

#	Article	IF	CITATIONS
73	Lowâ€oxygen and highâ€carbonâ€dioxide atmosphere improves the conservation of hematopoietic progenitors in hypothermia. Transfusion, 2009, 49, 1738-1746.	0.8	12
74	Oxygen Availability and Self Renewal of Stem Cells. , 2009, , .		0
75	Ex-Vivo Expanded Peripheral Blood Stem Cells (EVEC) Compared with Un Manipulated Peripheral Blood Stem Cells (PBSC) Autologous Transplantation for Multiple Myeloma: A Pair Match Analysis Blood, 2009, 114, 502-502.	0.6	3
76	Interleukin-6 (IL-6) and low O2 concentration (1%) synergize to improve the maintenance of hematopoietic stem cells (pre-CFC). Journal of Cellular Physiology, 2007, 212, 68-75.	2.0	39
77	Nucleic acid amplification testing detection of an HIV-1 infection in a blood donor during the preseroconversion window period. Transfusion Medicine, 2007, 17, 147-148.	0.5	6
78	A clinical-scale expansion of mobilized CD34+ hematopoietic stem and progenitor cells by use of a new serum-free medium. Transfusion, 2006, 46, 126-131.	0.8	33
79	Whole-blood leukodepletion filters as a source of CD34+ progenitors potentially usable in cell therapy. Transfusion, 2006, 46, 118-125.	0.8	26
80	Large-scale expansion and transplantation of CD34+ hematopoietic cells: in vitro and in vivo confirmation of neutropenia abrogation related to the expansion process without impairment of the long-term engraftment capacity. Transfusion, 2006, 46, 1934-1942.	0.8	40
81	Very Low O2Concentration (0.1%) Favors G0Return of Dividing CD34+Cells. Stem Cells, 2006, 24, 65-73.	1.4	115
82	Oxygen concentration influences mRNA processing and expression of thecd34 gene. Journal of Cellular Biochemistry, 2006, 97, 135-144.	1.2	13
83	Cord Blood Processing by Using a Standard Manual Technique and Automated Closed System "Sepax" (Kit CS-530). Stem Cells and Development, 2005, 14, 6-10.	1.1	33
84	Variations of factor VIII:C plasma levels with respect to the blood group ABO. Transfusion Medicine, 2004, 14, 187-188.	0.5	4
85	Simultaneous Maintenance of Human Cord Blood SCID-Repopulating Cells and Expansion of Committed Progenitors at Low O2 Concentration (3%). Stem Cells, 2004, 22, 716-724.	1.4	118
86	In Vivo MR Imaging of Intravascularly Injected Magnetically Labeled Mesenchymal Stem Cells in Rat Kidney and Liver. Radiology, 2004, 233, 781-789.	3.6	232
87	Interleukin-3 and ex vivo maintenance of hematopoietic stem cells: facts and controversies. European Cytokine Network, 2004, 15, 6-13.	1.1	16
88	Comparison of CD34+ cell collection on the CS-3000+ and Amicus blood cell separators. Transfusion, 2003, 43, 1423-1427.	0.8	26
89	An Efficient Large-Scale Thawing Procedure for Cord Blood Cells Destined for Selection and Ex Vivo Expansion of CD34+ Cells. Journal of Hematotherapy and Stem Cell Research, 2003, 12, 587-589.	1.8	15
90	Hypoxia maintains and interleukin-3 reduces the pre–colony-forming cell potential of dividing CD34+ murine bone marrow cells. Experimental Hematology, 2002, 30, 67-73.	0.2	72

#	Article	IF	CITATIONS
91	Angiotensin II That Reduces the Colony-Forming Ability of Hematopoietic Progenitors in Serum Free Medium Has an Inverse Effect in Serum-Supplemented Medium. Stem Cells, 2002, 20, 269-271.	1.4	20
92	Hypoxia Modifies Proliferation and Differentiation of CD34+CML Cells. Stem Cells, 2002, 20, 347-354.	1.4	54
93	Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion, 2000, 40, 1482-1488.	0.8	110
94	Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of committed progenitors. British Journal of Haematology, 2000, 108, 424-429.	1.2	89
95	The expansion of murine bone marrow cells preincubated in hypoxia as an in vitro indicator of their marrow-repopulating ability. Leukemia, 2000, 14, 735-739.	3.3	56
96	Effects of Lipoxygenase Metabolites of Arachidonic Acid on the Growth of Human Blood CD34+ Progenitors. Blood Cells, Molecules, and Diseases, 2000, 26, 427-436.	0.6	13
97	Pluripotent haemopoietic progenitor cells (CFU-Sd8) in peripheral blood of hereditarily anaemic Belgrade (b/b) rats. Laboratory Animals, 1999, 33, 77-82.	0.5	3
98	A Simple, One‐Step Clonal Assay Allows the Sequential Detection of Committed (CFU‐GM‐like) Progenitors and Several Subsets of Primitive (HPP‐CFC) Murine Progenitors. Stem Cells, 1999, 17, 219-225.	1.4	12
99	The cryopreservation protocol optimal for progenitor recovery is not optimal for preservation of marrow repopulating ability. Bone Marrow Transplantation, 1999, 23, 613-619.	1.3	53
100	Erythroid Progenitor Cells from Pig Bone Marrow and Peripheral Blood. Veterinary Journal, 1999, 158, 196-203.	0.6	6
101	Evaluation of cryopreserved murine and human hematopoietic stem and progenitor cells designated for transplantation. Vojnosanitetski Pregled, 1999, 56, 577-85.	0.1	1
102	α- And β-Globins of the Anemic Belgrade Laboratory Rat. II. The Effect of Hemin and Iron-Dextran Treatment. Hemoglobin, 1998, 22, 231-244.	0.4	1
103	Hemopoietic stem cell proliferation in Belgrade rats: to complete the parable. Hematology and Cell Therapy, 1997, 39, 307-316.	0.7	7
104	Modulation of Acute Myeloid Leukaemic Cell Growth by Human Macrophage Inflammatory Protein-1α. , 1997, , 421-429.		0
105	The Inhibitory Effect of Human Macrophage Inflammatory Proteinâ€1α (LD78) on Acute Myeloid Leukemia Cells in Vitro. Stem Cells, 1996, 14, 445-451.	1.4	4
106	In vivo effects of interleukin-1 receptor antagonist on hematopoietic bone marrow progenitor cells in normal mice. European Cytokine Network, 1996, 7, 71-4.	1.1	5
107	The Belgrade laboratory (b/b) rat and the role of hypoxia in the maintenance of hematopoietic stem cells. Experimental Hematology, 1996, 24, 1179-80.	0.2	0
108	Erythropoietin & erythroid progenitors in rats exposed to chronic hypoxia. Indian Journal of Medical Research, 1996, 104, 304-10.	0.4	1

#	Article	IF	CITATIONS
109	Constitutive production of regulators of stem cell proliferation in the hereditarily anaemic belgrade laboratory (b/b) rat. Comparative Haematology International, 1995, 5, 170-176.	0.5	5
110	The seeding efficiency of normal and hereditarily anemic (b/b) rat bone marrow colony forming unitsâ€spleen as determined in a "rat to mouse―assay. Stem Cells, 1995, 13, 666-670.	1.4	4
111	Hematopoietic stem cells in the hereditarily anemic Belgrade laboratory (b/b) rat. Experimental Hematology, 1995, 23, 1218-23.	0.2	10
112	The in vivo effect of recombinant human interleukin-1 receptor antagonist on spleen colony forming cells after radiation induced myelosuppression. European Cytokine Network, 1995, 6, 177-80.	1.1	2
113	The Disbalance of α- and β-Globins in Anemic Belgrade Rat Red Blood Cells. Biochemical and Biophysical Research Communications, 1994, 201, 115-122.	1.0	8
114	Stimulator of proliferation of spleen colony-forming cells in acute sterile inflammation. Cell Proliferation, 1993, 26, 503-510.	2.4	8
115	Stimulator of proliferation of spleen colony-forming cells in T-cell deprived mice treated with cyclophosphamide or irradiation. Cell Proliferation, 1991, 24, 507-515.	2.4	6