Wendy R Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5542225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hemp and buckwheat are valuable sources of dietary amino acids, beneficially modulating gastrointestinal hormones and promoting satiety in healthy volunteers. European Journal of Nutrition, 2022, 61, 1057-1072.	3.9	11
2	High throughput method development and optimised production of leaf protein concentrates with potential to support the agri-industry. Journal of Food Measurement and Characterization, 2022, 16, 49-65.	3.2	6
3	Buckwheat, Fava Bean and Hemp Flours Fortified with Anthocyanins and Other Bioactive Phytochemicals as Sustainable Ingredients for Functional Food Development. Nutraceuticals, 2022, 2, 150-161.	1.7	5
4	Invasive Plants Are a Valuable Alternate Protein Source and Can Contribute to Meeting Climate Change Targets. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	10
5	Nutritional and chemical profiling of UK-grown potato bean (Apios americana Medik) reveal its potential for diet biodiversification and revalorisation. Journal of Food Composition and Analysis, 2021, 98, 103821.	3.9	8
6	Impact of protein on the composition and metabolism of the human gut microbiota and health. Proceedings of the Nutrition Society, 2021, 80, 173-185.	1.0	20
7	Impact of rapeseed pomace extract on markers of oxidative stress and DNA damage in human SHâ€SY5Y cells. Journal of Food Biochemistry, 2021, 45, e13592.	2.9	2
8	The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters. Journal of Nutritional Biochemistry, 2020, 78, 108325.	4.2	62
9	Exploring Health-Promoting Attributes of Plant Proteins as a Functional Ingredient for the Food Sector: A Systematic Review of Human Interventional Studies. Nutrients, 2020, 12, 2291.	4.1	26
10	GST-4-Dependent Suppression of Neurodegeneration in C. elegans Models of Parkinson's and Machado-Joseph Disease by Rapeseed Pomace Extract Supplementation. Frontiers in Neuroscience, 2019, 13, 1091.	2.8	36
11	Rapid method for quantification of anthocyanidins and anthocyanins in human biological samples. Food Chemistry, 2019, 290, 56-63.	8.2	12
12	Folate, genomic stability and colon cancer: The use of single cell gel electrophoresis in assessing the impact of folate in vitro, in vivo and in human biomonitoring. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 843, 73-80.	1.7	18
13	Effect of increasing fruit and vegetable intake by dietary intervention on nutritional biomarkers and attitudes to dietary change: a randomised trial. European Journal of Nutrition, 2018, 57, 1855-1872.	3.9	68
14	Revalorisation of rapeseed pomace extracts: An in vitro study into its anti-oxidant and DNA protective properties. Food Chemistry, 2018, 239, 323-332.	8.2	25
15	Herbal remedies for urinary stones used in India and China: A review. Journal of Ethnopharmacology, 2017, 203, 55-68.	4.1	61
16	Availability and dose response of phytophenols from a wheat bran rich cereal product in healthy human volunteers. Molecular Nutrition and Food Research, 2017, 61, 1600202.	3.3	23
17	Wheat bran promotes enrichment within the human colonic microbiota of butyrateâ€producing bacteria that release ferulic acid. Environmental Microbiology, 2016, 18, 2214-2225.	3.8	119
18	Nutritional and Phytochemical Content of High-Protein Crops. Journal of Agricultural and Food Chemistry, 2016, 64, 7800-7811.	5.2	65

WENDY R RUSSELL

#	Article	IF	CITATIONS
19	Impact of Diet Composition on Blood Glucose Regulation. Critical Reviews in Food Science and Nutrition, 2016, 56, 541-590.	10.3	144
20	Low-grade inflammation, diet composition and health: current research evidence and its translation. British Journal of Nutrition, 2015, 114, 999-1012.	2.3	600
21	Potential of Fava Bean as Future Protein Supply to Partially Replace Meat Intake in the Human Diet. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 511-522.	11.7	188
22	Regulation of GPR55 in rat white adipose tissue and serum LPI by nutritional status, gestation, gender and pituitary factors. Molecular and Cellular Endocrinology, 2014, 383, 159-169.	3.2	27
23	Comparative study of the functional properties of lupin, green pea, fava bean, hemp, and buckwheat flours as affected by <scp>pH</scp> . Food Science and Nutrition, 2014, 2, 802-810.	3.4	68
24	Colonic bacterial metabolites and human health. Current Opinion in Microbiology, 2013, 16, 246-254.	5.1	293
25	Advanced analytical methodologies to study the microbial metabolome of the human gut. TrAC - Trends in Analytical Chemistry, 2013, 52, 54-60.	11.4	10
26	The gut microbial metabolome: modulation of cancer risk in obese individuals. Proceedings of the Nutrition Society, 2013, 72, 178-188.	1.0	27
27	Major phenylpropanoidâ€derived metabolites in the human gut can arise from microbial fermentation of protein. Molecular Nutrition and Food Research, 2013, 57, 523-535.	3.3	268
28	A single supplement of a standardised bilberry (Vaccinium myrtillus L.) extract (36 % wet weight) Tj ETQq0 0 0 lifestyle. Journal of Nutritional Science, 2013, 2, e22.	rgBT /Over 1.9	lock 10 Tf 50 78
29	High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. American Journal of Clinical Nutrition, 2011, 93, 1062-1072.	4.7	589
30	Plant secondary metabolites and gut health: the case for phenolic acids. Proceedings of the Nutrition Society, 2011, 70, 389-396.	1.0	128
31	Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria. Microbiology (United Kingdom), 2009, 155, 285-294.	1.8	77
32	Selective bioâ€evailability of phenolic acids from Scottish strawberries. Molecular Nutrition and Food Research, 2009, 53, S85-91.	3.3	47
33	Phenolic acid content of fruits commonly consumed and locally produced in Scotland. Food Chemistry, 2009, 115, 100-104.	8.2	97
34	Inhibition of 15-lipoxygenase-catalysed oxygenation of arachidonic acid by substituted benzoic acids. Bioorganic and Medicinal Chemistry, 2008, 16, 4589-4593.	3.0	11
35	Anti-Inflammatory Implications of the Microbial Transformation of Dietary Phenolic Compounds. Nutrition and Cancer, 2008, 60, 636-642.	2.0	68
36	Availability of blueberry phenolics for microbial metabolism in the colon and the potential inflammatory implications. Molecular Nutrition and Food Research, 2007, 51, 726-731.	3.3	48

#	Article	IF	CITATIONS
37	Inhibition of cytokine-induced prostanoid biogenesis by phytochemicals in human colonic fibroblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 124-130.	3.8	24
38	EPR Investigation into the Effects of Substrate Structure on Peroxidase-Catalyzed Phenylpropanoid Oxidation. Biomacromolecules, 2006, 7, 268-273.	5.4	24
39	Structural modification of phenylpropanoid-derived compounds and the effects on their participation in redox processes. Bioorganic and Medicinal Chemistry, 2005, 13, 2537-2546.	3.0	26