

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5542206/publications.pdf Version: 2024-02-01

<u> Ογτρα Ραιά</u>

#	Article	IF	CITATIONS
1	Strategies for improved temporal response of glass-based optical switches. Scientific Reports, 2022, 12, 239.	3.3	6
2	Editorial for the Special Issue on New Trends and Applications in Femtosecond Laser Micromachining. Micromachines, 2022, 13, 150.	2.9	0
3	Integrated fast optical switch fabricated by femtosecond laser micromachining. , 2022, , .		1
4	Automatic imaging of <i>Drosophila</i> embryos with light sheet fluorescence microscopy on chip. Journal of Biophotonics, 2021, 14, e202000396.	2.3	16
5	Effects of Thermal Annealing on Femtosecond Laser Micromachined Glass Surfaces. Micromachines, 2021, 12, 180.	2.9	17
6	3D laser nanolithography of crystals. , 2021, , .		0
7	Yield stress "in a flashâ€i investigation of nonlinearity and yielding in soft materials with an optofluidic microrheometer. Soft Matter, 2021, 17, 3105-3112.	2.7	4
8	Applications of Femtosecond-Laser-Generated In-Volume Structures. , 2021, , 1649-1689.		0
9	Virtual optofluidic time-stretch quantitative phase imaging. APL Photonics, 2020, 5, 046103.	5.7	15
10	High-throughput 3D imaging of single cells with light-sheet fluorescence microscopy on chip. Biomedical Optics Express, 2020, 11, 4397.	2.9	35
11	Applications of Femtosecond-Laser-Generated in-Volume Structures. , 2020, , 1-41.		1
12	Dual-Color Fluorescent Microscope on Chip for 3D Imaging of Single Cells. , 2019, , .		0
13	Optofluidic lab-on-chips for high throughput 3D imaging of cells and tissues. EPJ Web of Conferences, 2019, 215, 11002.	0.3	0
14	Polymeric fully inertial lab-on-a-chip with enhanced-throughput sorting capabilities. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	24
15	Three-dimensional femtosecond laser nanolithography of crystals. Nature Photonics, 2019, 13, 105-109.	31.4	156
16	Femtosecond laser microfabrication of a PMMA lab on a chip for high throughput size-based inertial sorting. , 2019, , .		0
17	Microfluidic Based Optical Microscopes on Chip. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 987-996.	1.5	53
18	Particle Manipulation by Optical Forces in Microfluidic Devices. Micromachines, 2018, 9, 200.	2.9	36

Petra PaiÃ"

#	Article	IF	CITATIONS
19	Optofluidic Devices for Mechanical Probing and Imaging of Cells by Laser Light. , 2018, , .		0
20	A computational approach to the characterization of a microfluidic device for continuous size-based inertial sorting. Journal Physics D: Applied Physics, 2017, 50, 255601.	2.8	27
21	Effect of reservoir geometry on vortex trapping of cancer cells. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	22
22	Particle focusing by 3D inertial microfluidics. Microsystems and Nanoengineering, 2017, 3, 17027.	7.0	76
23	Optofluidic light modulator integrated in lab-on-a-chip. Optics Express, 2017, 25, 7313.	3.4	16
24	Selective plane illumination microscopy on a chip. Lab on A Chip, 2016, 16, 1556-1560.	6.0	67
25	Femtosecond laser fabrication of optofluidic devices for single cell manipulation. MATEC Web of Conferences, 2015, 32, 02001.	0.2	0
26	An integrated optofluidic device for single-cell sorting driven by mechanical properties. Lab on A Chip, 2015, 15, 1262-1266.	6.0	55
27	Research highlights: surface-based microfluidic control. Lab on A Chip, 2015, 15, 3107-3110.	6.0	1
28	Sorting on the basis of deformability of single cells in a femtosecond laser fabricated optofluidic device. , 2015, , .		1
29	Adaptable acylindrical microlenses fabricated by femtosecond laser micromachining. , 2015, , .		0
30	Monolithic cell counter based on 3D hydrodynamic focusing in microfluidic channels. Proceedings of SPIE, 2014, , .	0.8	0
31	Waveguide arrays for light harvesting in microfluidic chips. Optical Engineering, 2014, 53, 071811.	1.0	3
32	Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels. Lab on A Chip, 2014, 14, 1826-1833.	6.0	69
33	Optofluidic integrated cell sorter fabricated by femtosecond lasers. Lab on A Chip, 2012, 12, 3779.	6.0	86