
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5542123/publications.pdf Version: 2024-02-01



KENICHI NACASE

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials, 2018, 153, 27-48.                                                                       | 11.4 | 297       |
| 2  | Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering.<br>Journal of the Royal Society Interface, 2009, 6, S293-309.                                             | 3.4  | 214       |
| 3  | Cell sheet approach for tissue engineering and regenerative medicine. Journal of Controlled Release, 2014, 190, 228-239.                                                                                        | 9.9  | 203       |
| 4  | Effects of Graft Densities and Chain Lengths on Separation of Bioactive Compounds by Nanolayered<br>Thermoresponsive Polymer Brush Surfaces. Langmuir, 2008, 24, 511-517.                                       | 3.5  | 160       |
| 5  | Interfacial Property Modulation of Thermoresponsive Polymer Brush Surfaces and Their Interaction with Biomolecules. Langmuir, 2007, 23, 9409-9415.                                                              | 3.5  | 143       |
| 6  | Preparation of Thermoresponsive Cationic Copolymer Brush Surfaces and Application of the Surface to Separation of Biomolecules. Biomacromolecules, 2008, 9, 1340-1347.                                          | 5.4  | 119       |
| 7  | Thermoresponsive-polymer-based materials for temperature-modulated bioanalysis and bioseparations.<br>Journal of Materials Chemistry B, 2016, 4, 6381-6397.                                                     | 5.8  | 94        |
| 8  | Thermoâ€Responsive Polymer Brushes as Intelligent Biointerfaces: Preparation via ATRP and Characterization. Macromolecular Bioscience, 2011, 11, 400-409.                                                       | 4.1  | 85        |
| 9  | Thermo-responsive polymer brush-grafted porous polystyrene beads for all-aqueous chromatography.<br>Journal of Chromatography A, 2010, 1217, 522-529.                                                           | 3.7  | 79        |
| 10 | Thermally-modulated on/off-adsorption materials for pharmaceutical protein purification.<br>Biomaterials, 2011, 32, 619-627.                                                                                    | 11.4 | 78        |
| 11 | Thermoresponsive Cationic Copolymer Brushes for Mesenchymal Stem Cell Separation.<br>Biomacromolecules, 2015, 16, 532-540.                                                                                      | 5.4  | 71        |
| 12 | Dynamically cell separating thermo-functional biointerfaces with densely packed polymer brushes.<br>Journal of Materials Chemistry, 2012, 22, 19514.                                                            | 6.7  | 67        |
| 13 | Influence of Graft Interface Polarity on Hydration/Dehydration of Grafted Thermoresponsive Polymer<br>Brushes and Steroid Separation Using All-Aqueous Chromatography. Langmuir, 2008, 24, 10981-10987.         | 3.5  | 62        |
| 14 | Thermoresponsive Polymer Brush Surfaces with Hydrophobic Groups for All-Aqueous<br>Chromatography. ACS Applied Materials & Interfaces, 2010, 2, 1247-1253.                                                      | 8.0  | 61        |
| 15 | High Stability of Thermoresponsive Polymer-Brush-Grafted Silica Beads as Chromatography Matrices.<br>ACS Applied Materials & Interfaces, 2012, 4, 1998-2008.                                                    | 8.0  | 61        |
| 16 | Selfâ€Oscillating Polymer Brushes. Angewandte Chemie - International Edition, 2013, 52, 7468-7471.                                                                                                              | 13.8 | 61        |
| 17 | Real-time observation of coil-to-globule transition in thermosensitive poly(N-isopropylacrylamide)<br>brushes by quartz crystal microbalance. Polymer, 2007, 48, 5713-5720.                                     | 3.8  | 57        |
| 18 | Simultaneous Enhancement of Cell Proliferation and Thermally Induced Harvest Efficiency Based on<br>Temperature-Responsive Cationic Copolymer-Grafted Microcarriers. Biomacromolecules, 2012, 13,<br>1765-1773. | 5.4  | 56        |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Poly(N-isopropylacrylamide) based thermoresponsive polymer brushes for bioseparation, cellular<br>tissue fabrication, and nano actuators. Nano Structures Nano Objects, 2018, 16, 9-23.                                                             | 3.5  | 56        |
| 20 | Hydrophobized Thermoresponsive Copolymer Brushes for Cell Separation by Multistep Temperature<br>Change. Biomacromolecules, 2013, 14, 3423-3433.                                                                                                    | 5.4  | 55        |
| 21 | Thermoresponsive Polymer Brush on Monolithic-Silica-Rod for the High-Speed Separation of Bioactive Compounds. Langmuir, 2011, 27, 10830-10839.                                                                                                      | 3.5  | 51        |
| 22 | Thermo-responsive protein adsorbing materials for purifying pharmaceuticalprotein on exposed charging surface. Journal of Materials Chemistry, 2011, 21, 2590-2593.                                                                                 | 6.7  | 47        |
| 23 | Phenotypic traits of mesenchymal stem cell sheets fabricated by temperature-responsive cell culture plate: structural characteristics of MSC sheets. Stem Cell Research and Therapy, 2019, 10, 353.                                                 | 5.5  | 47        |
| 24 | Monolithic Silica Rods Grafted with Thermoresponsive Anionic Polymer Brushes for High-Speed<br>Separation of Basic Biomolecules and Peptides. Biomacromolecules, 2014, 15, 1204-1215.                                                               | 5.4  | 46        |
| 25 | Artificial cilia as autonomous nanoactuators: Design of a gradient self-oscillating polymer brush with controlled unidirectional motion. Science Advances, 2016, 2, e1600902.                                                                       | 10.3 | 46        |
| 26 | Local Release of VEGF Using Fiber Mats Enables Effective Transplantation of Layered Cardiomyocyte<br>Sheets. Macromolecular Bioscience, 2017, 17, 1700073.                                                                                          | 4.1  | 45        |
| 27 | Preparation of thermo-responsive polymer brushes on hydrophilic polymeric beads by<br>surface-initiated atom transfer radical polymerization for a highly resolutive separation of peptides.<br>Journal of Chromatography A, 2010, 1217, 5978-5985. | 3.7  | 44        |
| 28 | Effect of Polymer Phase Transition Behavior on Temperature-Responsive Polymer-Modified Liposomes for siRNA Transfection. International Journal of Molecular Sciences, 2019, 20, 430.                                                                | 4.1  | 43        |
| 29 | Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for<br>bioseparation and tissue engineering applications. Advances in Colloid and Interface Science, 2021, 295,<br>102487.                                   | 14.7 | 43        |
| 30 | Effect of reaction solvent on the preparation of thermo-responsive stationary phase through a<br>surface initiated atom transfer radical polymerization. Journal of Chromatography A, 2011, 1218,<br>8617-8628.                                     | 3.7  | 42        |
| 31 | Thermally Modulated Cationic Copolymer Brush on Monolithic Silica Rods for High-Speed Separation of Acidic Biomolecules. ACS Applied Materials & amp; Interfaces, 2013, 5, 1442-1452.                                                               | 8.0  | 42        |
| 32 | Thermoresponsive Copolymer Brushes Possessing Quaternary Amine Groups for Strong<br>Anion-Exchange Chromatographic Matrices. Biomacromolecules, 2014, 15, 1031-1043.                                                                                | 5.4  | 42        |
| 33 | Thermoresponsive hydrophobic copolymer brushes modified porous monolithic silica for high-resolution bioseparation. RSC Advances, 2015, 5, 66155-66167.                                                                                             | 3.6  | 42        |
| 34 | Control of swelling–deswelling behavior of a self-oscillating gel by designing the chemical structure. RSC Advances, 2015, 5, 5781-5787.                                                                                                            | 3.6  | 42        |
| 35 | Preparation of Thermoresponsive Anionic Copolymer Brush Surfaces for Separating Basic<br>Biomolecules. Biomacromolecules, 2010, 11, 215-223.                                                                                                        | 5.4  | 41        |
| 36 | Thermoresponsive Anionic Copolymer Brushes Containing Strong Acid Moieties for Effective Separation of Basic Biomolecules and Proteins. Biomacromolecules, 2014, 15, 3846-3858.                                                                     | 5.4  | 40        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Thermoresponsive polymer-modified microfibers for cell separations. Acta Biomaterialia, 2017, 53, 81-92.                                                                                                                              | 8.3  | 40        |
| 38 | Protein purification using solid-phase extraction on temperature-responsive hydrogel-modified silica<br>beads. Journal of Chromatography A, 2018, 1568, 38-48.                                                                        | 3.7  | 40        |
| 39 | Effective separation of peptides using highly dense thermo-responsive polymer brush-grafted porous polystyrene beads. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 2191-2198. | 2.3  | 39        |
| 40 | Micro/nano-imprinted substrates grafted with a thermoresponsive polymer for thermally modulated cell separation. Journal of Materials Chemistry B, 2017, 5, 5924-5930.                                                                | 5.8  | 39        |
| 41 | Thermally Modulated Retention of Lymphoctytes on Polymerâ€Brushâ€Grafted Glass Beads.<br>Macromolecular Bioscience, 2012, 12, 333-340.                                                                                                | 4.1  | 38        |
| 42 | Protein separations via thermally responsive ionic block copolymer brush layers. RSC Advances, 2016, 6, 26254-26263.                                                                                                                  | 3.6  | 38        |
| 43 | Stereoregulation of Thermoresponsive Polymer Brushes by Surface-Initiated Living Radical<br>Polymerization and the Effect of Tacticity on Surface Wettability Langmuir, 2010, 26, 17781-17784.                                        | 3.5  | 35        |
| 44 | Design of Self-Oscillating Polymer Brushes and Control of the Dynamic Behaviors. Chemistry of Materials, 2015, 27, 7395-7402.                                                                                                         | 6.7  | 32        |
| 45 | LAT1-Targeting Thermoresponsive Fluorescent Polymer Probes for Cancer Cell Imaging. International<br>Journal of Molecular Sciences, 2018, 19, 1646.                                                                                   | 4.1  | 32        |
| 46 | Liposomes with temperature-responsive reversible surface properties. Colloids and Surfaces B:<br>Biointerfaces, 2019, 176, 309-316.                                                                                                   | 5.0  | 32        |
| 47 | Thermoresponsive anionic copolymer brush-grafted surfaces for cell separation. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110565.                                                                                             | 5.0  | 32        |
| 48 | Thermoresponsive Cationic Block Copolymer Brushes for Temperatureâ€Modulated Stem Cell<br>Separation. Macromolecular Rapid Communications, 2020, 41, e2000308.                                                                        | 3.9  | 32        |
| 49 | Characteristic differences of cell sheets composed of mesenchymal stem cells with different tissue origins. Regenerative Therapy, 2019, 11, 34-40.                                                                                    | 3.0  | 31        |
| 50 | LAT1-Targeting Thermoresponsive Liposomes for Effective Cellular Uptake by Cancer Cells. ACS Omega, 2019, 4, 6443-6451.                                                                                                               | 3.5  | 31        |
| 51 | Temperature-responsive chromatography for bioseparations: A review. Analytica Chimica Acta, 2020,<br>1138, 191-212.                                                                                                                   | 5.4  | 31        |
| 52 | Fabrication of Micropatterned Selfâ€Oscillating Polymer Brush for Direction Control of Chemical<br>Waves. Small, 2017, 13, 1700041.                                                                                                   | 10.0 | 29        |
| 53 | Antibody drug separation using thermoresponsive anionic polymer brush modified beads with optimised electrostatic and hydrophobic interactions. Scientific Reports, 2020, 10, 11896.                                                  | 3.3  | 29        |
| 54 | Rearrangement of hollow fibers for enhancing oxygen transfer in an artificial gill using oxygen<br>carrier solution. Journal of Membrane Science, 2005, 254, 207-217.                                                                 | 8.2  | 28        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enhanced Wettability Changes by Synergistic Effect of Micro/Nanoimprinted Substrates and Grafted<br>Thermoresponsive Polymer Brushes. Macromolecular Rapid Communications, 2015, 36, 1965-1970.                             | 3.9 | 26        |
| 56 | Mixed polymer brush as a functional ligand of silica beads for temperature-modulated hydrophobic and electrostatic interactions. Analytica Chimica Acta, 2020, 1095, 1-13.                                                  | 5.4 | 26        |
| 57 | Oxygen transfer performance of a membrane oxygenator composed of crossed and parallel hollow fibers. Biochemical Engineering Journal, 2005, 24, 105-113.                                                                    | 3.6 | 24        |
| 58 | Temperature-modulated cell-separation column using temperature-responsive cationic copolymer hydrogel-modified silica beads. Colloids and Surfaces B: Biointerfaces, 2019, 178, 253-262.                                    | 5.0 | 24        |
| 59 | Selective capture and non-invasive release of cells using a thermoresponsive polymer brush with affinity peptides. Biomaterials Science, 2021, 9, 663-674.                                                                  | 5.4 | 23        |
| 60 | Aspects of the Belousov–Zhabotinsky Reaction inside a Self-Oscillating Polymer Brush. Langmuir, 2018,<br>34, 1673-1680.                                                                                                     | 3.5 | 22        |
| 61 | Mesenchylmal Stem Cell Culture on Poly(N-isopropylacrylamide) Hydrogel with Repeated<br>Thermo-Stimulation. International Journal of Molecular Sciences, 2018, 19, 1253.                                                    | 4.1 | 21        |
| 62 | Thermoresponsive anionic block copolymer brushes with a strongly anionic bottom segment for effective interactions with biomolecules. RSC Advances, 2016, 6, 93169-93179.                                                   | 3.6 | 20        |
| 63 | Temperature-responsive mixed-mode column containing temperature-responsive polymer-modified beads. Analytica Chimica Acta, 2019, 1079, 220-229.                                                                             | 5.4 | 19        |
| 64 | Enhanced mechanical properties and cell separation with thermal control of PIPAAm-brushed polymer-blend microfibers. Journal of Materials Chemistry B, 2020, 8, 6017-6026.                                                  | 5.8 | 18        |
| 65 | Thermally-modulated cell separation columns using a thermoresponsive block copolymer brush as a packing material for the purification of mesenchymal stem cells. Biomaterials Science, 2021, 9, 7054-7064.                  | 5.4 | 18        |
| 66 | Green analytical method for the simultaneous analysis of cytochrome P450 probe substrates by<br>poly(N-isopropylacrylamide)-based temperature-responsive chromatography. Scientific Reports, 2020,<br>10, 8828.             | 3.3 | 16        |
| 67 | Design of Tetra-arm PEG-crosslinked Thermoresponsive Hydrogel for 3D Cell Culture. Analytical<br>Sciences, 2016, 32, 1203-1205.                                                                                             | 1.6 | 15        |
| 68 | Adsorption–Desorption Control of Fibronectin in Real Time at the Liquid/Polymer Interface on a<br>Quartz Crystal Microbalance by Thermoresponsivity. Biomacromolecules, 2019, 20, 1748-1755.                                | 5.4 | 15        |
| 69 | Simultaneous analysis of multiple oligonucleotides by temperature-responsive chromatography using<br>a poly(N-isopropylacrylamide)-based stationary phase. Analytical and Bioanalytical Chemistry, 2020, 412,<br>5341-5351. | 3.7 | 15        |
| 70 | Effect of pore diameter on the elution behavior of analytes from thermoresponsive polymer grafted beads packed columns. Scientific Reports, 2021, 11, 9976.                                                                 | 3.3 | 15        |
| 71 | Anion species-triggered antibody separation system utilizing a thermo-responsive polymer column under optimized constant temperature. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111890.                            | 5.0 | 15        |
| 72 | Visualization of Oxygen Partial Pressure and Numerical Simulation of a Running Polymer Electrolyte<br>Fuel Cell with Straight Flow Channels to Elucidate Reaction Distributions. ChemElectroChem, 2015, 2,<br>1495-1501.    | 3.4 | 13        |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Development of a compact artificial gill using concentrated hemoglobin solution as the oxygen carrier. Journal of Membrane Science, 2003, 215, 281-292.                                                        | 8.2 | 12        |
| 74 | Real-time visualization of oxygen partial pressures in straight channels of running polymer electrolyte fuel cell with water plugging. Journal of Power Sources, 2015, 273, 873-877.                           | 7.8 | 12        |
| 75 | Stable and Prolonged Autonomous Oscillation in a Self-Oscillating Polymer Brush Prepared on a<br>Porous Glass Substrate. Langmuir, 2019, 35, 9794-9801.                                                        | 3.5 | 11        |
| 76 | Crosslinked Poly( N â€Isopropylacrylamide)â€Based Microfibers as Cell Manipulation Materials with<br>Prompt Cell Detachment. Macromolecular Rapid Communications, 2019, 40, 1900464.                           | 3.9 | 10        |
| 77 | Autonomous Nanoscale Chemomechanical Oscillation on the Self-Oscillating Polymer Brush Surface by Precise Control of Graft Density. Langmuir, 2021, 37, 4380-4386.                                             | 3.5 | 10        |
| 78 | Viral vector purification with thermoresponsive-anionic mixed polymer brush modified beads-packed column. Separation and Purification Technology, 2022, 286, 120445.                                           | 7.9 | 9         |
| 79 | Hydration of poly(N-isopropylacrylamide) brushes on micro-silica beads measured by a fluorescent<br>probe. Chemical Physics Letters, 2010, 491, 193-198.                                                       | 2.6 | 8         |
| 80 | Effective Separation for New Therapeutic Modalities Utilizing Temperature-responsive Chromatography. Analytical Sciences, 2021, 37, 651-660.                                                                   | 1.6 | 8         |
| 81 | Temperature responsive chromatography for therapeutic drug monitoring with an aqueous mobile phase. Scientific Reports, 2021, 11, 23508.                                                                       | 3.3 | 8         |
| 82 | Dynamic electrical behaviour of a thermoresponsive polymer in well-defined<br>poly(N-isopropylacrylamide)-grafted semiconductor devices. RSC Advances, 2017, 7, 34517-34521.                                   | 3.6 | 7         |
| 83 | Temperature-responsive spin column for sample preparation using an all-aqueous eluent. Analytica<br>Chimica Acta, 2021, 1179, 338806.                                                                          | 5.4 | 7         |
| 84 | The photoresponse of a molybdenum porphyrin makes an artificial gill feasible. Journal of Membrane<br>Science, 2005, 249, 235-243.                                                                             | 8.2 | 6         |
| 85 | Two-dimensional temperature-responsive chromatography using a poly(N-isopropylacrylamide)<br>brush-modified stationary phase for effective therapeutic drug monitoring. Scientific Reports, 2022,<br>12, 2653. | 3.3 | 6         |
| 86 | Temperature-responsive mixed-mode column for the modulation of multiple interactions. Scientific Reports, 2022, 12, 4434.                                                                                      | 3.3 | 5         |
| 87 | Liquid Chromatography-Mass Spectrometric Analysis of Dehydroepiandrosterone and Related Steroids<br>Utilizing a Temperature-Responsive Stationary Phase. Chromatography, 2014, 35, 131-138.                    | 1.7 | 4         |
| 88 | Design of Functional Thermoresponsive Polymer Brushes and Their Application to Bioseparation.<br>Kobunshi Ronbunshu, 2018, 75, 143-154.                                                                        | 0.2 | 1         |
| 89 | Design of two complementary copolymers that work as a glue for cell-laden collagen gels. Chemical<br>Communications, 2020, 56, 10545-10548.                                                                    | 4.1 | 1         |
| 90 | Stem cell separation using thermoresponsive copolymer brushes having cationic charge. , 2015, , .                                                                                                              |     | 0         |

| #  | Article                                                                                                                                                              | lF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Correction: Thermoresponsive-polymer-based materials for temperature-modulated bioanalysis and bioseparations. Journal of Materials Chemistry B, 2017, 5, 2198-2198. | 5.8 | Ο         |
| 92 | Design of VEGF Releasing Fiber Mat for Effective Transplantation of Cardiomyocyte Sheets. Drug<br>Delivery System, 2019, 34, 173-178.                                | 0.0 | 0         |