Jason J Venkiteswaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5541977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 2005-2029.	0.7	155
2	A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron. Freshwater Biology, 2014, 59, 1323-1340.	1.2	129
3	Stable Oxygen Isotope Ratios of Nitrate Produced from Nitrification: ¹⁸ O-Labeled Water Incubations of Agricultural and Temperate Forest Soils. Environmental Science & Technology, 2010, 44, 5358-5364.	4.6	100
4	Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Scientific Reports, 2017, 7, 9158.	1.6	81
5	Dynamics of dissolved oxygen isotopic ratios: a transient model to quantify primary production, community respiration, and air–water exchange in aquatic ecosystems. Oecologia, 2007, 153, 385-398.	0.9	80
6	Nonlinear Response of Riverine N ₂ O Fluxes to Oxygen and Temperature. Environmental Science & Technology, 2014, 48, 1566-1573.	4.6	68
7	Cyanobacterial blooms in oligotrophic lakes: Shifting the highâ€nutrient paradigm. Freshwater Biology, 2021, 66, 1846-1859.	1.2	67
8	Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal reactive nitrogen cascading. Communications Earth & Environment, 2021, 2, .	2.6	56
9	Peer Reviewed: Experimenting with Hydroelectric Reservoirs. Environmental Science & Technology, 2004, 38, 346A-352A.	4.6	53
10	Biological Nitrogen Fixation Prevents the Response of a Eutrophic Lake to Reduced Loading of Nitrogen: Evidence from a 46-Year Whole-Lake Experiment. Ecosystems, 2018, 21, 1088-1100.	1.6	52
11	Carbon Dioxide and Methane Production in Small Reservoirs Flooding Upland Boreal Forest. Ecosystems, 2005, 8, 267-285.	1.6	46
12	AQUATIC METABOLISM AND ECOSYSTEM HEALTH ASSESSMENT USING DISSOLVED O ₂ STABLE ISOTOPE DIEL CURVES. Ecological Applications, 2008, 18, 965-982.	1.8	46
13	Deciphering the oxygen isotope composition of nitrous oxide produced by nitrification. Clobal Change Biology, 2012, 18, 356-370.	4.2	44
14	From the Ground Up: Global Nitrous Oxide Sources are Constrained by Stable Isotope Values. PLoS ONE, 2015, 10, e0118954.	1.1	43
15	A new mechanistic model of $\hat{l}'180$ -N2O formation by denitrification. Geochimica Et Cosmochimica Acta, 2013, 112, 102-115.	1.6	42
16	Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams. PLoS ONE, 2014, 9, e101756.	1.1	40
17	Nitrous Oxide Fluxes in Three Experimental Boreal Forest Reservoirs. Environmental Science & Technology, 2005, 39, 4353-4360.	4.6	39
18	Night and day: shortâ€ŧerm variation in nitrogen chemistry and nitrous oxide emissions from streams. Freshwater Biology, 2012, 57, 509-525.	1.2	38

#	Article	IF	CITATIONS
19	Millions of Boreal Shield Lakes can be used to Probe Archaean Ocean Biogeochemistry. Scientific Reports, 2017, 7, 46708.	1.6	33
20	Internal iron loading and warm temperatures are preconditions for cyanobacterial dominance in embayments along Georgian Bay, Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 1439-1453.	0.7	32
21	Methane oxidation: isotopic enrichment factors in freshwater boreal reservoirs. Applied Geochemistry, 2005, 20, 683-690.	1.4	29
22	Aquatic community metabolism response to municipal effluent inputs in rivers quantified using diel δ ¹⁸ 0 values of dissolved oxygen. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1232-1246.	0.7	28
23	Warming combined with experimental eutrophication intensifies lake phytoplankton blooms. Limnology and Oceanography, 2022, 67, 147-158.	1.6	25
24	Processes affecting greenhouse gas production in experimental boreal reservoirs. Global Biogeochemical Cycles, 2013, 27, 567-577.	1.9	24
25	Anoxygenic photosynthesis and iron–sulfur metabolic potential of <i>Chlorobia</i> populations from seasonally anoxic Boreal Shield lakes. ISME Journal, 2020, 14, 2732-2747.	4.4	22
26	LakeEnsemblR: An R package that facilitates ensemble modelling of lakes. Environmental Modelling and Software, 2021, 143, 105101.	1.9	21
27	Phosphorus-only fertilization rapidly initiates large nitrogen-fixing cyanobacteria blooms in two oligotrophic lakes. Environmental Research Letters, 2021, 16, 064078.	2.2	19
28	Revisiting the application of open-channel estimates of denitrification. Limnology and Oceanography: Methods, 2010, 8, 202-215.	1.0	18
29	Greenhouse Gas Mitigation through Dairy Manure Acidification. Journal of Environmental Quality, 2019, 48, 1435-1443.	1.0	17
30	Low sediment redox promotes cyanobacteria blooms across a trophic range: implications for management. Lake and Reservoir Management, 0, , 1-33.	0.4	17
31	Towards a global interpretation of dual nitrate isotopes in surface waters. Journal of Hydrology X, 2019, 4, 100037.	0.8	16
32	Extreme rainfall drives early onset cyanobacterial bloom. Facets, 2020, 5, 899-920.	1.1	16
33	Linking aquatic metabolism, gas exchange, and hypoxia to impacts along the 300-km Grand River, Canada. Freshwater Science, 2015, 34, 1216-1232.	0.9	15
34	Dairy manure acidification reduces CH4 emissions over short and long-term. Environmental Technology (United Kingdom), 2021, 42, 2797-2804.	1.2	14
35	The effect of freeze-thaw cycles on phosphorus release from riparian macrophytes in cold regions. Canadian Water Resources Journal, 2019, 44, 160-173.	0.5	11
36	Differences in ebullitive methane release from small, shallow ponds present challenges for scaling. Science of the Total Environment, 2022, 802, 149685.	3.9	9

#	Article	IF	CITATIONS
37	Changing nitrogen deposition with low l´15Nâ^'NH4 + and l´15Nâ^'NO3 â^' values at the Experimental Lakes Area, northwestern Ontario, Canada. Facets, 2017, 2, 249-266.	1.1	9
38	Proper Interpretation of Dissolved Nitrous Oxide Isotopes, Production Pathways, and Emissions Requires a Modelling Approach. PLoS ONE, 2014, 9, e90641.	1.1	8
39	Quantifying the fate of wastewater nitrogen discharged to a Canadian river. Facets, 2019, 4, 315-335.	1.1	8
40	Quantifying arsenic post-depositional mobility in lake sediments impacted by gold ore roasting in sub-arctic Canada using inverse diagenetic modelling. Environmental Pollution, 2021, 288, 117723.	3.7	7
41	Long-term changes in nutrient dynamics and plankton communities following the creation of a new reservoir. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 1459-1469.	0.7	6
42	Acidification of Residual Manure in Liquid Dairy Manure Storages and Its Effect on Greenhouse Gas Emissions. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	6
43	Occurrence of BMAA Isomers in Bloom-Impacted Lakes and Reservoirs of Brazil, Canada, France, Mexico, and the United Kingdom. Toxins, 2022, 14, 251.	1.5	6
44	Dissolved oxygen isotope modelling refines metabolic state estimates of stream ecosystems with different land use background. Scientific Reports, 2022, 12, .	1.6	6
45	Inverse modeling of dissolved O2 and δ18O-DO to estimate aquatic metabolism, reaeration and respiration isotopic fractionation: effects of variable light regimes and input uncertainties. Aquatic Sciences, 2014, 76, 313-329.	0.6	5
46	<scp>Sizeâ€based</scp> characterization of freshwater dissolved organic matter finds similarities within a waterbody type across different Canadian ecozones. Limnology and Oceanography Letters, 2021, 6, 85-95.	1.6	5
47	A model for training undergraduate students in collaborative science. Facets, 2018, 3, 818-829.	1.1	5
48	Early and late cyanobacterial bloomers in a shallow, eutrophic lake. Environmental Sciences: Processes and Impacts, 2022, 24, 1212-1227.	1.7	5
49	Metabolic regimes of three mid-order streams in southern Ontario, Canada exposed to contrasting sources of nutrients. Hydrobiologia, 2020, 847, 1925-1942.	1.0	3
50	Ten Best Practices to Strengthen Stewardship and Sharing of Water Science Data in Canada. Hydrological Processes, 0, , e14385.	1.1	3
51	Response Curves for Ammonia and Methane Emissions From Stored Liquid Manure Receiving Low Rates of Sulfuric Acid. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	2
52	Response Mercury and the FLUDEX project. Environmental Science & amp; Technology, 2005, 39, 184A-186A.	4.6	0
53	The Use of Carbon Mass Budgets and Stable Carbon Isotopes to Examine Processes Affecting CO2 and CH4 Production in the Experimental FLUDEX Reservoirs. , 0, , 355-382.		0