
Martins Mcl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5541861/publications.pdf Version: 2024-02-01

MADTINS MCI

#	Article	IF	CITATIONS
1	Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomaterialia, 2011, 7, 1431-1440.	4.1	510
2	Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 2006, 27, 5357-5367.	5.7	217
3	The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials, 2009, 30, 307-316.	5.7	147
4	Albumin and fibrinogen adsorption on PU–PHEMA surfaces. Biomaterials, 2003, 24, 2067-2076.	5.7	110
5	Adsorption of albumin on prosthetic materials: Implication for tribological behavior. Journal of Biomedical Materials Research - Part A, 2006, 78A, 581-589.	2.1	96
6	Synthesis of an O-alkynyl-chitosan and its chemoselective conjugation with a PEG-like amino-azide through click chemistry. Carbohydrate Polymers, 2012, 87, 240-249.	5.1	83
7	Eradication of Helicobacter pylori: Past, present and future. Journal of Controlled Release, 2014, 189, 169-186.	4.8	83
8	The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomaterialia, 2019, 94, 33-43.	4.1	78
9	Clinical Application of AMPs. Advances in Experimental Medicine and Biology, 2019, 1117, 281-298.	0.8	78
10	The N-terminal Half of the Peroxisomal Cycling Receptor Pex5p is a Natively Unfolded Domain. Journal of Molecular Biology, 2006, 356, 864-875.	2.0	76
11	Dhvar5 antimicrobial peptide (AMP) chemoselective covalent immobilization results on higher antiadherence effect than simple physical adsorption. Biomaterials, 2015, 52, 531-538.	5.7	76
12	Characterization of hLF1–11 immobilization onto chitosan ultrathin films, and its effects on antimicrobial activity. Acta Biomaterialia, 2014, 10, 3513-3521.	4.1	75
13	Impact of nanosystems in <i>Staphylococcus aureus</i> biofilms treatment. FEMS Microbiology Reviews, 2019, 43, 622-641.	3.9	64
14	Xeno-Free Strategies for Safe Human Mesenchymal Stem/Stromal Cell Expansion: Supplements and Coatings. Stem Cells International, 2017, 2017, 1-13.	1.2	62
15	Effect of Polyelectrolyte Film Stiffness on Endothelial Cells During Endothelial-to-Mesenchymal Transition. Biomacromolecules, 2015, 16, 3584-3593.	2.6	57
16	Tethering antimicrobial peptides onto chitosan: Optimization of azide-alkyne "click―reaction conditions. Carbohydrate Polymers, 2017, 165, 384-393.	5.1	55
17	Modulation of stability and mucoadhesive properties of chitosan microspheres for therapeutic gastric application. International Journal of Pharmaceutics, 2013, 454, 116-124.	2.6	53
18	Prevention of urinary catheter-associated infections by coating antimicrobial peptides from crowberry endophytes. Scientific Reports, 2019, 9, 10753.	1.6	51

#	Article	IF	CITATIONS
19	N-acetylcysteine-functionalized coating avoids bacterial adhesion and biofilm formation. Scientific Reports, 2017, 7, 17374.	1.6	50
20	Effect of surface chemistry on bacterial adhesion, viability, and morphology. Journal of Biomedical Materials Research - Part A, 2011, 99A, 344-353.	2.1	49
21	The potential utility of chitosan micro/nanoparticles in the treatment of gastric infection. Expert Review of Anti-Infective Therapy, 2014, 12, 981-992.	2.0	49
22	Albumin adsorption on alkanethiols self-assembled monolayers on gold electrodes studied by chronopotentiometry. Biomaterials, 2003, 24, 3697-3706.	5.7	47
23	Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori. International Journal of Pharmaceutics, 2017, 519, 128-137.	2.6	47
24	Antimicrobial peptide-based materials: opportunities and challenges. Journal of Materials Chemistry B, 2022, 10, 2384-2429.	2.9	47
25	Adsorbed fibrinogen leads to improved bone regeneration and correlates with differences in the systemic immune response. Acta Biomaterialia, 2013, 9, 7209-7217.	4.1	46
26	Antimicrobial coatings prepared from Dhvar-5-click-grafted chitosan powders. Acta Biomaterialia, 2019, 84, 242-256.	4.1	46
27	Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly(ethylene imine) and tetanus toxin fragment c. Journal of Controlled Release, 2010, 143, 350-358.	4.8	41
28	Self-Healing Spongy Coating for Drug "Cocktail―Delivery. ACS Applied Materials & Interfaces, 2016, 8, 4309-4313.	4.0	39
29	Protein adsorption on 18-alkyl chains immobilized on hydroxyl-terminated self-assembled monolayers. Biomaterials, 2005, 26, 3891-3899.	5.7	38
30	Effect of gastric environment on Helicobacter pylori adhesion to a mucoadhesive polymer. Acta Biomaterialia, 2013, 9, 5208-5215.	4.1	37
31	Aptamer-based fiber sensor for thrombin detection. Journal of Biomedical Optics, 2016, 21, 087005.	1.4	35
32	Adsorption of a therapeutic enzyme to self-assembled monolayers: effect of surface chemistry and solution pH on the amount and activity of adsorbed enzyme. Biomaterials, 2005, 26, 2695-2704.	5.7	33
33	Protein adsorption and clotting time of pHEMA hydrogels modified with C18 ligands to adsorb albumin selectively and reversibly. Biomaterials, 2009, 30, 5541-5551.	5.7	32
34	Dynamic stiffness of polyelectrolyte multilayer films based on disulfide bonds for in situ control of cell adhesion. Journal of Materials Chemistry B, 2015, 3, 7546-7553.	2.9	31
35	Lipid nanoparticles to counteract gastric infection without affecting gut microbiota. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 378-386.	2.0	31
36	Improving the adhesion of poly(ethylene terephthalate) fibers to poly(hydroxyethyl methacrylate) hydrogels by ozone treatment: Surface characterization and pull-out tests. Polymer, 2005, 46, 9840-9850.	1.8	30

#	Article	IF	CITATIONS
37	Albumin adsorption on cibacron blue F3G-A immobilized onto oligo(ethylene glycol)-terminated self-assembled monolayers. Journal of Materials Science: Materials in Medicine, 2003, 14, 945-954.	1.7	29
38	Induction of notch signaling by immobilization of jagged-1 on self-assembled monolayers. Biomaterials, 2009, 30, 6879-6887.	5.7	29
39	Bacterial-binding chitosan microspheres for gastric infection treatment and prevention. Acta Biomaterialia, 2013, 9, 9370-9378.	4.1	29
40	Molecularly designed surfaces for blood deheparinization using an immobilized heparinâ€binding peptide. Journal of Biomedical Materials Research - Part A, 2009, 88A, 162-173.	2.1	28
41	The effect of immobilization of thrombin inhibitors onto self-assembled monolayers on the adsorption and activity of thrombin. Biomaterials, 2010, 31, 3772-3780.	5.7	28
42	Characterization of two DLC coatings for joint prosthesis: The role of albumin on the tribological behavior. Surface and Coatings Technology, 2010, 204, 3451-3458.	2.2	27
43	Stiffness of polyelectrolyte multilayer film influences endothelial function of endothelial cell monolayer. Colloids and Surfaces B: Biointerfaces, 2017, 149, 379-387.	2.5	26
44	Graphene oxide-reinforced poly(2-hydroxyethyl methacrylate) hydrogels with extreme stiffness and high-strength. Composites Science and Technology, 2019, 184, 107819.	3.8	26
45	Chitosanâ€based gene delivery vectors targeted to the peripheral nervous system. Journal of Biomedical Materials Research - Part A, 2010, 95A, 801-810.	2.1	25
46	Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1139-1146.	1.4	25
47	Helicobacter pylori infection: A brief overview on alternative natural treatments to conventional therapy. Critical Reviews in Microbiology, 2016, 42, 94-105.	2.7	24
48	Selective protein adsorption modulates platelet adhesion and activation to oligo(ethylene) Tj ETQq0 0 0 rgBT /O Research - Part A, 2009, 89A, 642-653.	verlock 1 2.1	0 Tf 50 307 To 22
49	A 17-mer Membrane-Active MSI-78 Derivative with Improved Selectivity toward Bacterial Cells. Molecular Pharmaceutics, 2015, 12, 2904-2911.	2.3	22
50	Adsorbed Fibrinogen stimulates TLR-4 on monocytes and induces BMP-2 expression. Acta Biomaterialia, 2017, 49, 296-305.	4.1	22
51	Albumin and fibrinogen adsorption on Cibacron blue F3G-A immobilised onto PU-PHEMA (polyurethane-poly(hydroxyethylmethacrylate)) surfaces. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 439-455.	1.9	21
52	Surface Grafted MSI-78A Antimicrobial Peptide has High Potential for Gastric Infection Management. Scientific Reports, 2019, 9, 18212.	1.6	21
53	Platelet and leukocyte adhesion to albumin binding self-assembled monolayers. Journal of Materials Science: Materials in Medicine, 2011, 22, 2053-2063.	1.7	20
54	Bioengineered surfaces to improve the blood compatibility of biomaterials through direct thrombin inactivation. Acta Biomaterialia, 2012, 8, 4101-4110.	4.1	20

#	Article	IF	CITATIONS
55	Bioengineered surfaces promote specific protein–glycan mediated binding of the gastric pathogen Helicobacter pylori. Acta Biomaterialia, 2013, 9, 8885-8893.	4.1	19
56	Orally administrated chitosan microspheres bind Helicobacter pylori and decrease gastric infection in mice. Acta Biomaterialia, 2020, 114, 206-220.	4.1	19
57	The effect of octadecyl chain immobilization on the hemocompatibility of poly (2-hydroxyethyl) Tj ETQq1 1 0.	784314 rgB ⁻ 5.7	Г /Overlock I 18
58	Natural Cyanobacterial Polymer-Based Coating as a Preventive Strategy to Avoid Catheter-Associated Urinary Tract Infections. Marine Drugs, 2020, 18, 279.	2.2	18
59	The stability of selfâ€assembled monolayers with time and under biological conditions. Journal of Biomedical Materials Research - Part A, 2010, 94A, 833-843.	2.1	16
60	Protein Adsorption Characterization. Methods in Molecular Biology, 2012, 811, 141-161.	0.4	16
61	Self-Assembled Monolayers for Dental Implants. International Journal of Dentistry, 2018, 2018, 1-21.	0.5	16
62	Broad-Spectrum Anti-Adhesive Coating Based on an Extracellular Polymer from a Marine Cyanobacterium. Marine Drugs, 2019, 17, 243.	2.2	16
63	Antimicrobial Peptides in the Battle against Orthopedic Implant-Related Infections: A Review. Pharmaceutics, 2021, 13, 1918.	2.0	16
64	Bacteria-targeted biomaterials: Glycan-coated microspheres to bind Helicobacter pylori. Acta Biomaterialia, 2016, 33, 40-50.	4.1	15
65	Bioactivity of immobilized EGF on selfâ€assembled monolayers: Optimization of the immobilization process. Journal of Biomedical Materials Research - Part A, 2010, 94A, 576-585.	2.1	14
66	Atomic force microscopy measurements reveal multiple bonds between <i>Helicobacter pylori</i> blood group antigen binding adhesin and Lewis b ligand. Journal of the Royal Society Interface, 2014, 11, 20141040.	1.5	14
67	Grafting Techniques towards Production of Peptide-Tethered Hydrogels, a Novel Class of Materials with Biomedical Interest. Gels, 2015, 1, 194-218.	2.1	14
68	Cecropin–Melittin Functionalized Polyurethane Surfaces Prevent <i>Staphylococcus epidermidis</i> Adhesion without Inducing Platelet Adhesion and Activation. Advanced Materials Interfaces, 2018, 5, 1801390.	1.9	14
69	Graphene-based materials: the key for the successful application of pHEMA as a blood-contacting device. Biomaterials Science, 2021, 9, 3362-3377.	2.6	14
70	Eucalyptus spp. outer bark extracts inhibit Helicobacter pylori growth: in vitro studies. Industrial Crops and Products, 2017, 105, 207-214.	2.5	13
71	Optimization of the use of a pharmaceutical grade xenoâ€free medium for in vitro expansion of human mesenchymal stem/stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1785-e1795.	1.3	13
72	AMP–Chitosan Coating with Bactericidal Activity in the Presence of Human Plasma Proteins. Molecules, 2020, 25, 3046.	1.7	13

#	Article	IF	CITATIONS
73	An affinity-based approach to engineer laminin-presenting cell instructive microenvironments. Biomaterials, 2019, 192, 601-611.	5.7	12
74	Adhesion of human leukocytes on mixtures of hydroxyl―and methylâ€ŧerminated selfâ€assembled monolayers: Effect of blood protein adsorption. Journal of Biomedical Materials Research - Part A, 2010, 93A, 12-19.	2.1	11
75	Grafting MSI-78A onto chitosan microspheres enhances its antimicrobial activity. Acta Biomaterialia, 2022, 137, 186-198.	4.1	11
76	Interactions of leukocytes and platelets with poly(lysine/leucine) immobilized on tetraethylene glycol-terminated self-assembled monolayers. Acta Biomaterialia, 2011, 7, 1949-1955.	4.1	10
77	Graphene Oxide Coating Improves the Mechanical and Biological Properties of Decellularized Umbilical Cord Arteries. ACS Applied Materials & Interfaces, 2021, 13, 32662-32672.	4.0	10
78	A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance. Acta Biomaterialia, 2016, 46, 129-140.	4.1	9
79	Thiol–Norbornene Photoclick Chemistry for Grafting Antimicrobial Peptides onto Chitosan to Create Antibacterial Biomaterials. ACS Applied Polymer Materials, 2022, 4, 5012-5026.	2.0	9
80	Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide. Acta Biomaterialia, 2014, 10, 1227-1237.	4.1	8
81	<i>N</i> -Acetyl- <scp>l</scp> -cysteine-Loaded Nanosystems as a Promising Therapeutic Approach Toward the Eradication of <i>Pseudomonas aeruginosa</i> Biofilms. ACS Applied Materials & Interfaces, 2021, 13, 42329-42343.	4.0	8
82	Helicobacter pylori biofilms are disrupted by nanostructured lipid carriers: A path to eradication?. Journal of Controlled Release, 2022, 348, 489-498.	4.8	7
83	Conjugation Chemistry Principles and Surface Functionalization of Nanomaterials. , 2018, , 35-66.		6
84	Effect of surface chemistry on hMSC growth under xeno-free conditions. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110836.	2.5	6
85	The biophysics of bacterial infections: Adhesion events in the light of force spectroscopy. Cell Surface, 2021, 7, 100048.	1.5	6
86	Disclosure of a Promising Lead to Tackle Complicated Skin and Skin Structure Infections: Antimicrobial and Antibiofilm Actions of Peptide PP4-3.1. Pharmaceutics, 2021, 13, 1962.	2.0	5
87	DNA-Aptamer optical biosensors based on a LPG-SPR optical fiber platform for point-of-care diagnostic. Proceedings of SPIE, 2014, , .	0.8	1
88	Nonantibiotic-Based Therapeutics Targeting Helicobacter pylori: From Nature to the Lab. , 2018, , .		1
89	Targeting and killing the Ever-Challenging ulcer bug. International Journal of Pharmaceutics, 2022, 617, 121582.	2.6	1
90	Self-referenced label free biosensors based on differential fiber optic interferometry. , 2014, , .		0

6

#	Article	IF	CITATIONS
91	Only a "Click―Away: Development of Arginine-Rich Peptide-Based Materials Using Click Chemistry. Springer Protocols, 2020, , 37-51.	0.1	0