Yong Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554155/publications.pdf Version: 2024-02-01

YONG THENG

#	Article	IF	CITATIONS
1	Complex Slip Distribution of the 2021 MwÂ7.4 Maduo, China, Earthquake: An Event Occurring on the Slowly Slipping Fault. Seismological Research Letters, 2022, 93, 653-665.	1.9	21
2	Measurements of Seismometer Orientation of the First Phase CHINArray and Their Implications on Vector-Recording-Based Seismic Studies. Bulletin of the Seismological Society of America, 2021, 111, 36-49.	2.3	15
3	Earthquake potential of the seismic gap between the Wenchuan and Lushan earthquakes: Current status, thoughts, and challenges. Science China Earth Sciences, 2021, 64, 503-506.	5.2	4
4	Narrow Rupture of the 2020 MwÂ7.4 La Crucecita, Mexico, Earthquake. Seismological Research Letters, 2021, 92, 1891-1899.	1.9	6
5	Joint inversion of Rayleigh wave ellipticity and phase velocity for crustal structure in Taiwan. Tectonophysics, 2021, 814, 228946.	2.2	3
6	Crustal Deformations of the Central North China Craton Constrained by Radial Anisotropy. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018374.	3.4	12
7	Highâ€Resolution 3â€D Shear Wave Velocity Model of the Tibetan Plateau: Implications for Crustal Deformation and Porphyry Cu Deposit Formation. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019215.	3.4	29
8	Stress modulation of the seismic gap between the 2008 Ms 8.0 Wenchuan earthquake and the 2013 Ms 7.0 Lushan earthquake and implications for seismic hazard. Geophysical Journal International, 2020, 221, 2113-2125.	2.4	24
9	The 2018 <i>M</i> _w 7.9 Offshore Kodiak, Alaska, Earthquake: An Unusual Outer Rise Strikeâ€Slip Earthquake. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019267.	3.4	9
10	Transient Viscosity and Afterslip of the 2015 MwÂ8.3 Illapel, Chile, Earthquake. Bulletin of the Seismological Society of America, 2019, 109, 2567-2581.	2.3	7
11	Ambient Noise Tomography Across the Taiwan Strait, Taiwan Island, and Southwestern Ryukyu Arc: Implications for Subsurface Slab Interactions. Tectonics, 2019, 38, 579-594.	2.8	8
12	Joint inversion of ambient noise and earthquake data in the Trans-North China Orogen: On-going lithospheric modification and its impact on the Cenozoic continental rifting. Tectonophysics, 2019, 763, 73-85.	2.2	8
13	Seismic and Aseismic Fault Slip Associated with the 2017 MwÂ8.2 Chiapas, Mexico, Earthquake Sequence. Seismological Research Letters, 2019, 90, 1111-1120.	1.9	17
14	Seismic Evidence on Different Rifting Mechanisms in Southern and Northern Segments of the Fenheâ€Weihe Rift Zone. Journal of Geophysical Research: Solid Earth, 2019, 124, 609-630.	3.4	26
15	Tomographic imaging of the 2017 Ms7.0 Jiuzhaigou earthquake source region and its implications on material extrusion in the northeast Tibetan plateau. Tectonophysics, 2019, 752, 24-34.	2.2	9
16	Preliminary analysis on the source properties and seismogenic structure of the 2017 Ms7.0 Jiuzhaigou earthquake. Science China Earth Sciences, 2018, 61, 339-352.	5.2	27
17	Locking Status and Earthquake Potential Hazard along the Middle-South Xianshuihe Fault. Remote Sensing, 2018, 10, 2048.	4.0	19
18	Rupture model of the 2013 <i>M</i> _W 6.6 Lushan (China) earthquake constrained by a new GPS data set and its effects on potential seismic hazard. Earthquake Science, 2018, 31, 117-125.	0.9	5

Yong Zheng

#	Article	IF	CITATIONS
19	Rupture features of the 2016 M w 6.2 Norcia earthquake and its possible relationship with strong seismic hazards. Geophysical Research Letters, 2017, 44, 1320-1328.	4.0	41
20	Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar, over the past 110Âyears and its implications for seismic hazard. Geophysical Research Letters, 2017, 44, 4781-4789.	4.0	29
21	An integrated analysis of source parameters, seismogenic structure, and seismic hazards related to the 2014 MS 6.3 Kangding earthquake, China. Tectonophysics, 2017, 712-713, 1-9.	2.2	16
22	Rupture process of the M s 7.0 Lushan earthquake determined by joint inversion of local static GPS records, strong motion data, and teleseismograms. Journal of Earth Science (Wuhan, China), 2017, 28, 404-410.	3.2	8
23	Theoretical Solution and Applications of Ocean Bottom Pressure Induced by Seismic Seafloor Motion. Geophysical Research Letters, 2017, 44, 10,272.	4.0	29
24	Reprint of: Rupture processes of the 2015 Mw 7.9 Gorkha earthquake and its Mw 7.3 aftershock and their implications on the seismic risk. Tectonophysics, 2017, 714-715, 31-43.	2.2	2
25	Coseismic Coulomb failure stress changes caused by the 2017 M7.0 Jiuzhaigou earthquake, and its relationship with the 2008 Wenchuan earthquake. Science China Earth Sciences, 2017, 60, 2181-2189.	5.2	33
26	Refined 3D Seismicâ€Velocity Structures and Seismogenic Environment of the MsÂ6.5 Ludian Earthquake. Bulletin of the Seismological Society of America, 2017, 107, 3023-3036.	2.3	12
27	Crustal structure in the junction of Qinling Orogen, Yangtze Craton and Tibetan Plateau: implications for the formation of the Dabashan Orocline and the growth of Tibetan Plateau. Geophysical Journal International, 2016, 205, 1670-1681.	2.4	22
28	Rupture processes of the 2015 Mw 7.9 Gorkha earthquake and its Mw 7.3 aftershock and their implications on the seismic risk. Tectonophysics, 2016, 682, 264-277.	2.2	16
29	Towards combining multiple geophysical datasets to determine earthquake source parameters in China. Science China Earth Sciences, 2016, 59, 2260-2262.	5.2	1
30	Rayleigh wave phase velocities of South China block and its adjacent areas. Science China Earth Sciences, 2016, 59, 2165-2178.	5.2	4
31	A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophysical Journal International, 2016, 206, 954-979.	2.4	260
32	Fault locking near Istanbul: indication of earthquake potential from InSAR and GPS observations. Geophysical Journal International, 2016, 205, 490-498.	2.4	21
33	An Adaptive 2D Planar Projection and Its Application in Geoscience Studies. Journal of Earth Science (Wuhan, China), 2015, 26, 724-728.	3.2	0
34	Rupture processes of the 2012 September 5 <i>M</i> _w 7.6 Nicoya, Costa Rica earthquake constrained by improved geodetic and seismological observations. Geophysical Journal International, 2015, 203, 175-183.	2.4	14
35	Stress evolution and seismic hazard on the Maqin-Maqu segment of East Kunlun Fault zone from co-, post- and interseismic stress changes. Geophysical Journal International, 2015, 200, 244-253.	2.4	38
36	Kinematic rupture process of the 2014 Chile <i>M</i> _w 8.1 earthquake constrained by strong-motion, GPS static offsets and teleseismic data. Geophysical Journal International, 2015, 202, 1137-1145.	2.4	17

YONG ZHENG

#	Article	IF	CITATIONS
37	Shear-wave velocity structure of the crust and uppermost mantle in the Shanxi rift zone. Earthquake Science, 2015, 28, 135-149.	0.9	3
38	Rupture Process of the 23 October 2011 Mw7.1 Van Earthquake in Eastern Turkey by Joint Inversion of Teleseismic, GPS and Strong-Motion Data. Pure and Applied Geophysics, 2015, 172, 1383-1396.	1.9	9
39	Source Parameters of the 2014 <i>M</i> _s Â6.5 Ludian Earthquake Sequence and Their Implications on the Seismogenic Structure. Seismological Research Letters, 2015, 86, 1614-1621.	1.9	21
40	Focal mechanism and rupture process of the 2012 M w 7.0 Santa Isabel, Mexico earthquake inverted by teleseismic data. Journal of Earth Science (Wuhan, China), 2015, 26, 384-390.	3.2	2
41	Overlapping post-seismic deformation processes: afterslip and viscoelastic relaxation following the 2011 Mw 9.0 Tohoku (Japan) earthquake. Geophysical Journal International, 2014, 196, 218-229.	2.4	85
42	The thermochemical structure of the lithosphere and upper mantle beneath south China: Results from multiobservable probabilistic inversion. Journal of Geophysical Research: Solid Earth, 2014, 119, 8417-8441.	3.4	45
43	Cosmogenic nuclide burial age of the Sanying Formation and its implications. Science China Earth Sciences, 2014, 57, 1141-1149.	5.2	7
44	Penetration of mid-crustal low velocity zone across the Kunlun Fault in the NE Tibetan Plateau revealed by ambient noise tomography. Earth and Planetary Science Letters, 2014, 406, 81-92.	4.4	75
45	Time constraints for the Yellow River traversing the Sanmen Gorge. Geochemistry, Geophysics, Geosystems, 2014, 15, 395-407.	2.5	52
46	Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. Journal of Geophysical Research: Solid Earth, 2013, 118, 4226-4252.	3.4	126
47	Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake. Science China Earth Sciences, 2013, 56, 1158-1168.	5.2	40
48	Stress changes on major faults caused by 2013 Lushan earthquake and its relationship with 2008 Wenchuan earthquake. Science China Earth Sciences, 2013, 56, 1169-1176.	5.2	65
49	Source parameters inversion of the 2013 Lushan earthquake by combining teleseismic waveforms and local seismograms. Science China Earth Sciences, 2013, 56, 1177-1186.	5.2	36
50	Rupture process of the M s7.0 Lushan earthquake, 2013. Science China Earth Sciences, 2013, 56, 1187-1192.	5.2	55
51	Coulomb stress evolution along Xianshuihe–Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008. Earth and Planetary Science Letters, 2013, 377-378, 199-210.	4.4	86
52	Magnitude and rupture duration from high frequency teleseismic P wave with projected landweber deconvolution. Science China Earth Sciences, 2013, 56, 13-21.	5.2	3
53	Uprising period and elevation of the Wenyu granitic pluton in the Xiaoqinling District, Central China. Science Bulletin, 2013, 58, 4459-4471.	1.7	13
54	Co- and post-seismic surface deformation and gravity changes of MS7.0 Lushan, earthquake. Earthquake Science, 2013, 26, 207-212.	0.9	2

YONG ZHENG

#	Article	IF	CITATIONS
55	Did the MS7.0 Lushan earthquake dynamically trigger earthquakes in the Datong volcanic region (Shanxi Province)?. Earthquake Science, 2013, 26, 229-239.	0.9	1
56	5Hz GPS seismology of the El Mayor-Cucapah earthquake: estimating the earthquake focal mechanism. Geophysical Journal International, 2012, 190, 1723-1732.	2.4	32
57	Crustal structure of the central Tibetan plateau and geological interpretation. Earthquake Science, 2012, 25, 363-370.	0.9	0
58	A synoptic view of the distribution and connectivity of the midâ€crustal low velocity zone beneath Tibet. Journal of Geophysical Research, 2012, 117, .	3.3	214
59	Provenance and time constraints on the formation of the first bend of the Yangtze River. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	50
60	Static slip model of the M w 9.0 Tohoku (Japan) earthquake: Results from joint inversion of terrestrial GPS data and seafloor GPS/acoustic data. Science Bulletin, 2012, 57, 1990-1997.	1.7	11
61	The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophysical Journal International, 2012, 189, 1565-1583.	2.4	166
62	Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. Journal of Geophysical Research, 2011, 116, .	3.3	134
63	The co-seismic Coulomb stress change and expected seismicity rate caused by 14 April 2010 Ms=7.1 Yushu, China, earthquake. Tectonophysics, 2011, 510, 345-353.	2.2	20
64	Slip model for the 2011 M w 9.0 Sendai (Japan) earthquake and its M w 7.9 aftershock derived from GPS data. Science Bulletin, 2011, 56, 2941-2947.	1.7	11
65	Modeling of co- and post-seismic surface deformation and gravity changes of MW6.9 Yushu, Qinghai, earthquake. Earthquake Science, 2011, 24, 177-183.	0.9	3
66	Effects of fault movement and material properties on deformation and stress fields of Tibetan Plateau. Earthquake Science, 2011, 24, 185-197.	0.9	1
67	Simulation on seismogenic environment of strong earthquakes in Sichuanâ€Yunnan region, China. Concurrency Computation Practice and Experience, 2010, 22, 1626-1643.	2.2	2
68	Small‣cale Upper Mantle Convection Beneath the Mongoliaâ€Baikal Rift Zone and Its Geodynamic Significance. Chinese Journal of Geophysics, 2010, 53, 529-541.	0.2	3
69	A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone. Science China Earth Sciences, 2010, 53, 1655-1664.	5.2	19
70	Crustal structure of the northeastern Tibetan plateau, the Ordos block and the Sichuan basin from ambient noise tomography. Earthquake Science, 2010, 23, 465-476.	0.9	39
71	Strong aftershocks in the northern segment of the Wenchuan earthquake rupture zone and their seismotectonic implications. Earth, Planets and Space, 2010, 62, 881-886.	2.5	16
72	Slip model of the 2008 M w 7.9 Wenchuan (China) earthquake derived from co-seismic GPS data. Earth, Planets and Space, 2010, 62, 869-874.	2.5	25

YONG ZHENG

#	Article	IF	CITATIONS
73	Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	105
74	Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet. Tectonophysics, 2010, 482, 216-225.	2.2	75
75	Stress changes on major faults caused by M w7.9 Wenchuan earthquake, May 12, 2008. Science in China Series D: Earth Sciences, 2009, 52, 593-601.	0.9	67
76	Source mechanism of strong aftershocks (M s⩾5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Science in China Series D: Earth Sciences, 2009, 52, 739-753.	0.9	65
77	The Influence of Mantle Convection on the Lithospheric Deformation of China Mainland. Chinese Journal of Geophysics, 2008, 51, 733-743.	0.2	5
78	Analysis of the Thermal Structure of Lithospheric Mantle and Lithospheric Isostasy in China Continent. Chinese Journal of Geophysics, 2008, 51, 744-752.	0.2	1
79	Focal Mechanisms and Seismogenic Structures of the <i>M</i> _s 5.7 and <i>M</i> _s 4.8 Jiujiangâ€Ruichang Earthquakes of Nov.26, 2005. Chinese Journal of Geophysics, 2008, 51, 125-131.	0.2	1
80	Simulation of the Effect of Faults Movement on Stress and Deformation Fields of Tibetan Plateau by Discontinuous Movement Models. Chinese Journal of Geophysics, 2007, 50, 1199-1212.	0.2	3
81	Simulation of Lithospheric Evolution of the China Mainland and Its Surrounding Regions. Chinese Journal of Geophysics, 2006, 49, 356-371.	0.2	15
82	Inversion of gravity and topography data for the crust thickness of China and its adjacent region. Acta Seismologica Sinica, 2006, 19, 264-272.	0.2	2
83	Present-day slip-rate of Altyn Tagh Fault: Numerical result constrained by GPS data. Earth, Planets and Space, 2003, 55, 509-514.	2.5	6