Daniela Thrän

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5541452/publications.pdf

Version: 2024-02-01

183 papers 4,033 citations

32 h-index 50 g-index

197 all docs

197 docs citations

197 times ranked

 $\begin{array}{c} 4057 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Bioenergy from "surplus―land: environmental and socio-economic implications. BioRisk, 0, 7, 5-50.	0.2	165
2	A review of biomass potential and current utilisation – Status quo forÂ93 biogenic wastes and residues in Germany. Biomass and Bioenergy, 2016, 95, 257-272.	2.9	144
3	A novel role for bioenergy: A flexible, demand-oriented power supply. Energy, 2013, 61, 18-26.	4.5	138
4	The contribution of wood-based construction materials for leveraging a low carbon building sector in europe. Sustainable Cities and Society, 2017, 34, 405-418.	5.1	136
5	Wood pellet market and trade: a global perspective. Biofuels, Bioproducts and Biorefining, 2013, 7, 24-42.	1.9	115
6	Moving torrefaction towards market introduction $\hat{a}\in$ Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass and Bioenergy, 2016, 89, 184-200.	2.9	113
7	Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany. Applied Energy, 2014, 114, 749-762.	5.1	101
8	ENSPRESO - an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials. Energy Strategy Reviews, 2019, 26, 100379.	3.3	91
9	Global biomass potentials â€" Resources, drivers and scenario results. Energy for Sustainable Development, 2010, 14, 200-205.	2.0	85
10	Social life cycle assessment indices and indicators to monitor the social implications of wood-based products. Journal of Cleaner Production, 2018, 172, 4074-4084.	4.6	81
11	Assessment of global bioenergy potentials. Mitigation and Adaptation Strategies for Global Change, 2011, 16, 103-115.	1.0	77
12	Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry. Applied Energy, 2018, 222, 621-636.	5.1	60
13	Stakeholders' Interests and Perceptions of Bioeconomy Monitoring Using a Sustainable Development Goal Framework. Sustainability, 2019, 11, 1511.	1.6	58
14	Social life cycle assessment: in pursuit of a framework for assessing wood-based products from bioeconomy regions in Germany. International Journal of Life Cycle Assessment, 2018, 23, 651-662.	2.2	56
15	Interpreting long-term energy scenarios and the role of bioenergy in Germany. Renewable and Sustainable Energy Reviews, 2017, 68, 1222-1233.	8.2	54
16	Non-fossil CO2 recyclingâ€"The technical potential for the present and future utilization for fuels in Germany. Journal of CO2 Utilization, 2019, 30, 130-141.	3.3	52
17	Flexible bioenergy supply for balancing fluctuating renewables in the heat and power sector—a review of technologies and concepts. Energy, Sustainability and Society, 2015, 5, .	1.7	51
18	Flexible power generation scenarios for biogas plants operated in Germany: impacts on economic viability and GHG emissions. International Journal of Energy Research, 2017, 41, 63-80.	2.2	49

#	Article	IF	CITATIONS
19	Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources. Energy, 2014, 72, 80-92.	4.5	48
20	Monitoring the progress towards bioeconomy using multi-regional input-output analysis: The example of wood use in Germany. Journal of Cleaner Production, 2017, 161, 1-11.	4.6	47
21	The future of biomass and bioenergy deployment and trade: a synthesis of 15 years IEA Bioenergy Task 40 on sustainable bioenergy trade. Biofuels, Bioproducts and Biorefining, 2019, 13, 247-266.	1.9	47
22	The circularity of potential bio-textile production routes: Comparing life cycle impacts of bio-based materials used within the manufacturing of selected leather substitutes. Journal of Cleaner Production, 2021, 287, 125470.	4.6	44
23	The dynamics of the global wood pellet markets and trade – key regions, developments and impact factors. Biofuels, Bioproducts and Biorefining, 2019, 13, 267-280.	1.9	43
24	Gaps and Research Demand for Sustainability Certification and Standardisation in a Sustainable Bio-Based Economy in the EU. Sustainability, 2018, 10, 2455.	1.6	42
25	Addressing uncertainty in decarbonisation policy mixes – Lessons learned from German and European bioenergy policy. Energy Research and Social Science, 2017, 33, 82-94.	3.0	41
26	Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries. Energies, 2019, 12, 3803.	1.6	40
27	Revealing the Environmental Advantages of Industrial Symbiosis in Woodâ€Based Bioeconomy Networks: An Assessment From a Life Cycle Perspective. Journal of Industrial Ecology, 2019, 23, 808-822.	2.8	40
28	Handling uncertainty in bioenergy policy design $\hat{a}\in$ A case study analysis of UK and German bioelectricity policy instruments. Biomass and Bioenergy, 2015, 79, 64-79.	2.9	38
29	Towards energy landscapes – "Pathfinder for sustainable wind power locations― Energy, 2017, 134, 611-621.	4.5	38
30	Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors. Applied Energy, 2017, 208, 252-262.	5.1	37
31	Renewable methane – A technology evaluation by multi-criteria decision making from a European perspective. Energy, 2017, 139, 468-484.	4.5	36
32	How to measure the impact of biogenic residues, wastes and by-products: Development of a national resource monitoring based on the example of Germany. Biomass and Bioenergy, 2019, 127, 105275.	2.9	36
33	From Paris agreement to business cases for upgraded biogas: Analysis of potential market uptake for biomethane plants in Germany using biogenic carbon capture and utilization technologies. Biomass and Bioenergy, 2019, 120, 313-323.	2.9	36
34	Resources, Collaborators, and Neighbors: The Three-Pronged Challenge in the Implementation of Bioeconomy Regions. Sustainability, 2019, 11, 7235.	1.6	35
35	How to measure flexibility – Performance indicators for demand driven power generation from biogas plants. Renewable Energy, 2019, 134, 135-146.	4.3	35
36	Competitiveness of advanced and conventional biofuels: Results from least-cost modelling of biofuel competition in Germany. Energy Policy, 2017, 107, 394-402.	4.2	33

#	Article	IF	Citations
37	Are decisions well supported for the energy transition? A review on modeling approaches for renewable energy policy evaluation. Energy, Sustainability and Society, 2017, 7, .	1.7	33
38	Hydrothermal processes as treatment paths for biogenic residues in Germany: A review of the technology, sustainability and legal aspects. Journal of Cleaner Production, 2018, 172, 239-252.	4.6	33
39	Economic assessment of flexible power generation from biogas plants in Germany's future electricity system. Renewable Energy, 2020, 146, 1471-1485.	4.3	33
40	Contributions of flexible power generation from biomass to a secure and cost-effective electricity supply—a review of potentials, incentives and obstacles in Germany. Energy, Sustainability and Society, 2018, 8, .	1.7	32
41	Unlocking the Energy Potential of Manure—An Assessment of the Biogas Production Potential at the Farm Level in Germany. Agriculture (Switzerland), 2016, 6, 20.	1.4	31
42	Improved power provision from biomass: A retrospective on the impacts of German energy policy. Biomass and Bioenergy, 2018, 111, 1-12.	2.9	31
43	Cascade use indicators for selected biopolymers: Are we aiming for the right solutions in the design for recycling of bio-based polymers?. Waste Management and Research, 2017, 35, 367-378.	2.2	30
44	How to decarbonize the natural gas sector: A dynamic simulation approach for the market development estimation of renewable gas in Germany. Applied Energy, 2018, 213, 555-572.	5.1	30
45	How not to compare apples and oranges: Generate context-specific performance reference points for a social life cycle assessment model. Journal of Cleaner Production, 2018, 198, 587-600.	4.6	30
46	Governance of sustainability in the German biogas sector—adaptive management of the Renewable Energy Act between agriculture and the energy sector. Energy, Sustainability and Society, 2020, 10, .	1.7	30
47	The Availability and Assessment of Potential Agricultural Residues for the Regional Development of Second-Generation Bioethanol in Thailand. Waste and Biomass Valorization, 2021, 12, 6091-6118.	1.8	29
48	When considering no man is an islandâ€"assessing bioenergy systems in a regional and LCA context: a review. International Journal of Life Cycle Assessment, 2016, 21, 885-902.	2.2	28
49	Reasonable potential for GHG savings by anaerobic biomethane in Germany and UK derived from economic and ecological analyses. Applied Energy, 2016, 184, 840-852.	5.1	27
50	Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?. Energy Policy, 2017, 109, 324-336.	4.2	27
51	Future competitive bioenergy technologies in the German heat sector: Findings from an economic optimization approach. Energy, 2019, 189, 116194.	4.5	27
52	Smart Bioenergy. , 2015, , .		26
53	Biomass price developments inhibit biofuel investments and research in Germany: The crucial future role of high yields. Journal of Cleaner Production, 2018, 172, 1654-1663.	4.6	26
54	Flexible Biogas in Future Energy Systemsâ€"Sleeping Beauty for a Cheaper Power Generation. Energies, 2018, 11, 761.	1.6	26

#	Article	lF	CITATIONS
55	Hidden outlaws in the forest? A legal and spatial analysis of onshore wind energy in Germany. Energy Research and Social Science, 2019, 55, 14-25.	3.0	26
56	Wind energy expansion scenarios – A spatial sustainability assessment. Energy, 2019, 180, 367-375.	4.5	26
57	A Regional Socio-Economic Life Cycle Assessment of a Bioeconomy Value Chain. Sustainability, 2020, 12, 1259.	1.6	26
58	Synergies and trade-offs between nature conservation and climate policy: Insights from the "Natural Capital Germany – TEEB DE―study. Ecosystem Services, 2017, 24, 187-199.	2.3	25
59	Fostering renewable energy provision from manure in Germany – Where to implement GHG emission reduction incentives. Energy Policy, 2017, 110, 471-477.	4.2	25
60	Comparative Life Cycle Assessment of HTC Concepts Valorizing Sewage Sludge for Energetic and Agricultural Use. Energies, 2019, 12, 786.	1.6	24
61	Assessing the technical and environmental performance of wood-based fiber laminates with lignin based phenolic resin systems. Resources, Conservation and Recycling, 2019, 141, 455-464.	5.3	23
62	Environmental-Economic Assessment of the Pressure Swing Adsorption Biogas Upgrading Technology. Bioenergy Research, 2021, 14, 901-909.	2.2	23
63	Electrofuels from excess renewable electricity at high variable renewable shares: cost, greenhouse gas abatement, carbon use and competition. Sustainable Energy and Fuels, 2021, 5, 828-843.	2.5	23
64	Biomass flow in bioeconomy: Overview for Germany. Renewable and Sustainable Energy Reviews, 2021, 150, 111449.	8.2	23
65	The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision. Applied Energy, 2016, 184, 1038-1050.	5.1	22
66	Robust bioenergy technologies for the German heat transition: A novel approach combining optimization modeling with Sobol' sensitivity analysis. Applied Energy, 2020, 262, 114534.	5.1	21
67	Competition – Supporting or preventing an increased use of bioenergy?. Biotechnology Journal, 2007, 2, 1514-1524.	1.8	20
68	Evaluation of biomethane technologies in Europe – Technical concepts under the scope of a Delphi-Survey embedded in a multi-criteria analysis. Energy, 2016, 114, 1176-1186.	4.5	20
69	Bioenergy Carriers – From Smoothly Treated Biomass towards Solid and Gaseous Biofuels. Chemie-Ingenieur-Technik, 2018, 90, 68-84.	0.4	20
70	Capacity Expansion Pathways for a Wind and Solar Based Power Supply and the Impact of Advanced Technology—A Case Study for Germany. Energies, 2019, 12, 324.	1.6	20
71	Techno-economic and environmental suitability criteria of hydrothermal processes for treating biogenic residues: A SWOT analysis approach. Journal of Cleaner Production, 2018, 200, 293-304.	4.6	19
72	Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany. Data, 2019, 4, 29.	1.2	19

#	Article	IF	Citations
73	Greenhouse gas abatement optimal deployment of biofuels from crops in Germany. Transportation Research, Part D: Transport and Environment, 2019, 69, 265-275.	3.2	19
74	A Method for Assessing Regional Bioenergy Potentials Based on GIS Data and a Dynamic Yield Simulation Model. Energies, 2020, 13, 6488.	1.6	19
75	Urban Water Demand Simulation in Residential and Non-Residential Buildings Based on a CityGML Data Model. ISPRS International Journal of Geo-Information, 2020, 9, 642.	1.4	19
76	Future Renewable Fuel Mixes in Transport in Germany under RED II and Climate Protection Targets. Energies, 2020, 13, 1712.	1.6	19
77	Pesticide runoff from energy crops: A threat to aquatic invertebrates?. Science of the Total Environment, 2015, 537, 187-196.	3.9	18
78	RELCA: a REgional Life Cycle inventory for Assessing bioenergy systems within a region. Energy, Sustainability and Society, 2016, 6, .	1.7	18
79	Optimal Siting of Wind Farms in Wind Energy Dominated Power Systems. Energies, 2018, 11, 978.	1.6	18
80	A framework for implementing holistic and integrated life cycle sustainability assessment of regional bioeconomy. International Journal of Life Cycle Assessment, 2021, 26, 1998-2023.	2.2	18
81	Energy crops and pesticide contamination: Lessons learnt from the development of energy crop cultivation in Germany. Biomass and Bioenergy, 2014, 70, 416-428.	2.9	17
82	The MILESTONES modeling framework: An integrated analysis of national bioenergy strategies and their global environmental impacts. Environmental Modelling and Software, 2016, 86, 14-29.	1.9	17
83	Making the COVID-19 crisis a real opportunity for environmental sustainability. Sustainability Science, 2021, 16, 2137-2145.	2.5	17
84	Managing spatial sustainability trade-offs: The case of wind power. Ecological Economics, 2021, 185, 107029.	2.9	16
85	Impact of the Renewable Energy Sources Act in Germany on electricity produced with solid biofuels – Lessons learned by monitoring the market development. Biomass and Bioenergy, 2013, 53, 162-171.	2.9	15
86	Modelling the effect of different agricultural practices on stream nitrogen load in central Germany. Energy, Sustainability and Society, 2016, 6, .	1.7	15
87	Strategy Elements for a Sustainable Bioenergy Policy Based on Scenarios and Systems Modeling: Germany as Example. Chemical Engineering and Technology, 2017, 40, 211-226.	0.9	15
88	Insights from the Sustainability Monitoring Tool SUMINISTRO Applied to a Case Study System of Prospective Wood-Based Industry Networks in Central Germany. Sustainability, 2020, 12, 3896.	1.6	15
89	The knowledge-based bioeconomy and its impact in our working field. Waste Management and Research, 2017, 35, 689-690.	2.2	14
90	One Century of Bioenergy in Germany: Wildcard and Advanced Technology. Chemie-Ingenieur-Technik, 2018, 90, 1676-1698.	0.4	14

#	Article	IF	CITATIONS
91	Relative Greenhouse Gas Abatement Cost Competitiveness of Biofuels in Germany. Energies, 2018, 11, 615.	1.6	14
92	Recent Developments in Low iLUC Policies and Certification in the EU Biobased Economy. Sustainability, 2020, 12, 8147.	1.6	14
93	Status and Perspectives of Biomass Use for Industrial Process Heat for Industrialized Countries. Chemical Engineering and Technology, 2020, 43, 1469-1484.	0.9	14
94	Netâ€Zero CO ₂ Germany—A Retrospect From the Year 2050. Earth's Future, 2022, 10, .	2.4	14
95	Consequential LCA and LCC using linear programming: an illustrative example of biorefineries. International Journal of Life Cycle Assessment, 2019, 24, 2191-2205.	2.2	13
96	Bioenergy beyond the German "Energiewendeâ€â€"Assessment framework for integrated bioenergy strategies. Biomass and Bioenergy, 2020, 142, 105769.	2.9	13
97	Environmental Sustainability Post-COVID-19: Scrutinizing Popular Hypotheses from a Social Science Perspective. Sustainability, 2021, 13, 8679.	1.6	13
98	Effects of the German Renewable Energy Sources Act and environmental, social and economic factors on biogas plant adoption and agricultural land use change. Energy, Sustainability and Society, 2021, 11, .	1.7	12
99	Optimal biomass allocation to the German bioeconomy based on conflicting economic and environmental objectives. Journal of Cleaner Production, 2021, 309, 127465.	4.6	12
100	Modelling biodiesel production within a regional context – A comparison with RED Benchmark. Renewable Energy, 2017, 108, 355-370.	4.3	11
101	Time to tear down the pyramids? A critique of cascading hierarchies as a policy tool. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e279.	1.9	11
102	How to identify suitable ways for the hydrothermal treatment of wet bio-waste? A critical review and methods proposal. Waste Management and Research, 2018, 36, 912-923.	2.2	11
103	Energy Crops in Regional Biogas Systems: An Integrative Spatial LCA to Assess the Influence of Crop Mix and Location on Cultivation GHG Emissions. Sustainability, 2020, 12, 237.	1.6	11
104	Framework for Assessing the Feasibility of Carbon Dioxide Removal Options Within the National Context of Germany. Frontiers in Climate, 2022, 4, .	1.3	11
105	Strengths and gaps of the EU frameworks for the sustainability assessment of bio-based products and bioenergy. Energy, Sustainability and Society, 2020, 10, .	1.7	10
106	Hydrothermal carbonization for sludge disposal in Germany: A comparative assessment for industrialâ€scale scenarios in 2030. Journal of Industrial Ecology, 2021, 25, 720-734.	2.8	10
107	Give them creditâ€the greenhouse gas performance of regional biogas systems. GCB Bioenergy, 2019, 11, 791-808.	2.5	9
108	Bioenergy plants' potential for contributing to heat generation in Germany. Energy, Sustainability and Society, 2020, 10, .	1.7	9

#	Article	IF	CITATIONS
109	German Energy and Decarbonization Scenarios: "Blind Spots―With Respect to Biomass-Based Carbon Removal Options. Frontiers in Energy Research, 2020, 8, .	1.2	9
110	Bottom-up assessment of local agriculture, forestry and urban waste potentials towards energy autonomy of isolated regions: Example of Réunion. Energy for Sustainable Development, 2022, 66, 125-139.	2.0	9
111	Key Development Factors of Hydrothermal Processes in Germany by 2030: A Fuzzy Logic Analysis. Energies, 2018, 11, 3532.	1.6	8
112	Temporal and spatial availability of cereal straw in Germanyâ€"Case study: Biomethane for the transport sector. Energy, Sustainability and Society, 2020, 10, .	1.7	8
113	The crucial role of biomass-based heat in a climate-friendly Germany–A scenario analysis. Energy, 2019, 186, 115859.	4.5	7
114	Greenhouse Gas Abatement Potentials and Economics of Selected Biochemicals in Germany. Sustainability, 2020, 12, 2230.	1.6	7
115	Identifying the Necessities of Regional-Based Analysis to Study Germany's Biogas Production Development under Energy Transition. Land, 2021, 10, 135.	1.2	7
116	What Drives a Future German Bioeconomy? A Narrative and STEEPLE Analysis for Explorative Characterisation of Scenario Drivers. Sustainability, 2022, 14, 3045.	1.6	7
117	A Review on Supply Costs and Prices of Residual Biomass in Techno-Economic Models for Europe. Sustainability, 2022, 14, 7473.	1.6	7
118	A consolidated potential analysis of bio-methane and e-methane using two different methods for a medium-term renewable gas supply in Germany. Energy, Sustainability and Society, 2020, 10 , .	1.7	6
119	Stakeholder perceptions about sustainability governance in the German biogas sector. Energy, Sustainability and Society, 2020, 10, .	1.7	6
120	Estimating the potentials for reducing the impacts on climate change by increasing the cascade use and extending the lifetime of wood products in Germany. Resources Conservation & Recycling X, 2020, 6, 100034.	4.2	6
121	Modeling of the German Wind Power Production with High Spatiotemporal Resolution. ISPRS International Journal of Geo-Information, 2021, 10, 104.	1.4	6
122	Integrating Regionalized Socioeconomic Considerations onto Life Cycle Assessment for Evaluating Bioeconomy Value Chains: A Case Study on Hybrid Wood–Concrete Ceiling Elements. Sustainability, 2021, 13, 4221.	1.6	6
123	Nebenprodukte, RýckstÃ ¤ de und AbfÃ ‡ e. , 2016, , 273-323.		6
124	Empirical greenhouse gas assessment for flexible bioenergy in interaction with the German power sector. Renewable Energy, 2022, 181, 1100-1109.	4.3	6
125	Benopt-Heat: An economic optimization model to identify robust bioenergy technologies for the German heat transition. SoftwareX, 2022, 18, 101032.	1.2	6
126	Drivers and Barriers to Substituting Firewood with Biomass Briquettes in the Kenyan Tea Industry. Sustainability, 2022, 14, 5611.	1.6	6

#	Article	IF	CITATIONS
127	Bioenergie – Beitrag zum heutigen und zukÃ1⁄4nftigen Energiesystem. Zeitschrift FÃ1⁄4r Energiewirtschaft, 2016, 40, 181-197.	0.2	5
128	The Role of a Renewable Energy Target for the Transport Sector Beyond 2020: Lessons Learned from EU Biofuel Policy., 2019,, 527-542.		5
129	Generation of Spatiotemporally Resolved Power Production Data of PV Systems in Germany. ISPRS International Journal of Geo-Information, 2020, 9, 621.	1.4	5
130	Anticipatory study for identifying the key influential factors of the biogas system in Germany contributing to the energy system of 2050. Futures, 2021, 128, 102704.	1.4	5
131	Development of Bioenergy Trade in Four Different Settings – The Role of Potential and Policies. Lecture Notes in Energy, 2014, , 65-101.	0.2	5
132	Biomethane from Manure, Agricultural Residues and Biowaste—GHG Mitigation Potential from Residue-Based Biomethane in the European Transport Sector. Sustainability, 2021, 13, 14007.	1.6	5
133	Abandoning the Residual Load Duration Curve and Overcoming the Computational Challenge., 2022,,.		5
134	"Biomass Energy Use― Bioenergy - More Than a Secure Reserve in the Future Energy Mix?!. Chemical Engineering and Technology, 2017, 40, 210-210.	0.9	4
135	Impact of flexible bioenergy provision on residual load fluctuation: a case study for the TransnetBW transmission system in 2022. Energy, Sustainability and Society, 2017, 7, .	1.7	4
136	Trends and Challenges in Regional Life Cycle Management: A Bibliometric Analysis. Sustainability, 2021, 13, 10335.	1.6	4
137	Bridging Modeling and Certification to Evaluate Low-ILUC-Risk Practices for Biobased Materials with a User-Friendly Tool. Sustainability, 2022, 14, 2030.	1.6	4
138	Nine Measures to Takeâ€"Unlocking the Potential for Biomass Heat in the German Industry and the Trade, Commerce, and Service Sector. Energies, 2020, 13, 4614.	1.6	3
139	A Systematic Approach for Assessing and Managing the Urban Bioeconomy. , 2021, , 393-410.		3
140	Incorporating consumer choice into an optimization model for the German heat sector: Effects on projected bioenergy use. Journal of Cleaner Production, 2021, 295, 126319.	4.6	3
141	A GIS-Based Simulation Method for Regional Food Potential and Demand. Land, 2021, 10, 880.	1.2	3
142	Flexible Heat Provision from Biomass. , 2015, , 83-105.		3
143	$ ilde{A}$ –kosystembasierte Klimapolitik f $ ilde{A}$ 1/4r Deutschland. , 2017, , 237-260.		3
144	Comprehensive LCA of Biobased Sustainable Aviation Fuels and JET A-1 Multiblend. Applied Sciences (Switzerland), 2022, 12, 3372.	1.3	3

#	Article	IF	CITATIONS
145	A Comparison of Functional Fillers—Greenhouse Gas Emissions and Air Pollutants from Lignin-Based Filler, Carbon Black and Silica. Sustainability, 2022, 14, 5393.	1.6	3
146	Chapter 7. Biomass-based Green Energy Generation. RSC Green Chemistry, 2009, , 86-124.	0.0	2
147	The Potential of Flexible Power Generation from Biomass: A Case Study for a German Region. , 2015, , 141-159.		2
148	Spatial Distribution of Overhead Power Lines and Underground Cables in Germany in 2016. Data, 2018, 3, 34.	1.2	2
149	Integrating Biogas Plants into Microgrids for Bridging Temporary Power Supply Interruptions. Chemical Engineering and Technology, 2019, 42, 1078-1087.	0.9	2
150	Biomethane: Local Energy Carrier or European Commodity?., 2019,, 543-557.		2
151	Combining Environmental Footprint Models, Remote Sensing Data, and Certification Data towards an Integrated Sustainability Risk Analysis for Certification in the Case of Palm Oil. Sustainability, 2020, 12, 8273.	1.6	2
152	Biomass biomass Provision biomass provision and Use Biomass Use , Sustainability Aspects. , 2012, , 1487-1517.		2
153	Biomass Resources and Sustainability Issues for a Flexible Bioenergy Provision. , 2015, , 33-48.		2
154	What could be the future of hydrothermal processing wet biomass in Germany by 2030? A semi-quantitative system analysis. Biomass and Bioenergy, 2020, 138, 105588.	2.9	2
155	Criteria prioritization for the sustainable development of second-generation bioethanol in Thailand using the Delphi-AHP technique. Energy, Sustainability and Society, 2021, 11, .	1.7	2
156	Einfýhrung in das System Bioökonomie. , 2020, , 1-19.		2
157	Two birds with one stone: A combined environmental and economic performance assessment of rapeseedâ€based biodiesel production. GCB Bioenergy, 2022, 14, 215-241.	2.5	2
158	Spatiotemporal Modeling of the Electricity Production from Variable Renewable Energies in Germany. ISPRS International Journal of Geo-Information, 2022, 11, 90.	1.4	2
159	A bottom-up GIS-based method for simulation of ground-mounted PV potentials at regional scale. Energy Reports, 2022, 8, 5053-5066.	2.5	2
160	Energy landscapes of today and tomorrow. Energy, Sustainability and Society, 2020, 10, .	1.7	1
161	All in One: A Comprehensive Goal and Indicator System for Smart Bioenergy. Chemical Engineering and Technology, 2020, 43, 1554-1563.	0.9	1
162	Nebenprodukte, RückstÃ ¤ de und AbfÃ ¤ e., 2009, , 135-170.		1

#	Article	IF	CITATIONS
163	Drivers of Risks for Biodiversity and Ecosystem Services: Biogas Plants Development in Germany. , 2019, , 113-117.		1
164	Monitoring der Bioökonomie. , 2020, , 311-319.		1
165	Classification of Solid Biofuels as a Tool for Market Development. , 2005, , 153-166.		O
166	Optimisation of the use of biomass for energy production (Optimierung der energetischen) Tj ETQq0 0 0 rgBT /	Overlock 1	0 Tf 50 622 To
167	Review of "Rise and fall of the carbon civilisation: resolving global environmental and resource problems―by Patrick Moriarty and Damon Honnery. Energy, Sustainability and Society, 2012, 2, .	1.7	O
168	Biomass Energy Use: Bioenergy - Flexible and Integrated Into the Next Age. Chemical Engineering and Technology, 2018, 41, 2100-2100.	0.9	0
169	Biogas Substrates from Municipalities and Industries. , 2019, , 101-111.		O
170	Bioenergy: The Xâ€Factor. Chemical Engineering and Technology, 2020, 43, 1468-1468.	0.9	0
171	Correction to: Effects of the German Renewable Energy Sources Act and environmental, social and economic factors on biogas plant adoption and agricultural land use change. Energy, Sustainability and Society, 2021, 11, .	1.7	0
172	Bioenergy. , 2009, , 346-351.		0
173	Biogas biogas Substrates from Municipalities and Industries biogas substrates from industries. , 2012, , 1174-1184.		O
174	Zehn Meilensteine f $\tilde{A}^{1}\!\!/\!\!4$ r eine nachhaltige Bioenergiestrategie in Deutschland. \tilde{A} -kologisches Wirtschaften, 2015, 30, 46.	0.1	0
175	Bereitstellungskonzepte., 2016,, 325-382.		O
176	The standardisation, production and utilisation of biomethane in Europe and China - a comprehensive analysis. International Journal of Oil, Gas and Coal Technology, 2017, 14, 110.	0.1	0
177	Biogas Substrates from Municipalities and Industries. , 2017, , 1-11.		0
178	Transitioning the Heat Supply System – Challenges with Special Focus on Bioenergy in the Context of Urban Areas. Future City, 2018, , 173-196.	0.2	0
179	Ghg Reduction Targets in Germany: 80 - 95% - What Does it Mean for Bioenergy and the Heating Sector in Particular?., 0,,.		0
180	Spatial Sustainability Assessment of Wind Energy Expansion Scenarios. , 0, , .		0

Daniela ThrÃ**¤**

#	Article	lF	CITATIONS
181	Removal of Agricultural Residues from Conventional Cropping Systems. , 2019, , 263-269.		O
182	Szenarien und Modelle zur Gestaltung einer nachhaltigen Bioökonomie. , 2020, , 297-310.		0
183	Standortbestimmung des Systems Bioökonomie in Deutschland. , 2020, , 373-386.		O