Patricia GarcÃ-a-Muñoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic degradation of polystyrene nanoplastics in water. A methodological study. Journal of Environmental Chemical Engineering, 2022, 10, 108195.	3.3	8
2	Photocatalytic activation of peroxymonosulfate using ilmenite (FeTiO3) for Enterococcus faecalis inactivation. Journal of Environmental Chemical Engineering, 2022, 10, 108231.	3.3	11
3	Efficient photocatalytic mineralization of polymethylmethacrylate and polystyrene nanoplastics by TiO2/β-SiC alveolar foams. Environmental Chemistry Letters, 2021, 19, 1803-1808.	8.3	55
4	TiO2 and TiO2-Carbon Hybrid Photocatalysts for Diuron Removal from Water. Catalysts, 2021, 11, 457.	1.6	5
5	Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions. Materials, 2021, 14, 4799.	1.3	1
6	UV-A light-assisted gas-phase formic acid decomposition on photo-thermo Ru/TiO2 catalyst. Catalysis Today, 2021, 380, 138-146.	2.2	8
7	Highly robust La1-xTixFeO3 dual catalyst with combined photocatalytic and photo-CWPO activity under visible light for 4-chlorophenol removal in water. Applied Catalysis B: Environmental, 2020, 262, 118310.	10.8	30
8	Reaction pathways, kinetics and toxicity assessment during the photocatalytic degradation of glyphosate and myclobutanil pesticides: Influence of the aqueous matrix. Chemical Engineering Journal, 2020, 384, 123315.	6.6	46
9	Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications. Topics in Current Chemistry, 2020, 378, 6.	3.0	39
10	Ti-Modified LaFeO ₃ /l̂²-SiC Alveolar Foams as Immobilized Dual Catalysts with Combined Photo-Fenton and Photocatalytic Activity. ACS Applied Materials & Interfaces, 2020, 12, 57025-57037.	4.0	16
11	Selective reduction of nitrate to N2 using ilmenite as a low cost photo-catalyst. Applied Catalysis B: Environmental, 2020, 273, 118930.	10.8	21
12	Activity enhancement pathways in LaFeO3@TiO2 heterojunction photocatalysts for visible and solar light driven degradation of myclobutanil pesticide in water. Journal of Hazardous Materials, 2020, 400, 123099.	6.5	53
13	Coating-free TiO2@ ¹² -SiC alveolar foams as a ready-to-use composite photocatalyst with tunable adsorption properties for water treatment. RSC Advances, 2020, 10, 3817-3825.	1.7	13
14	Synergy effect between photocatalysis and heterogeneous photo-Fenton catalysis on Ti-doped LaFeO ₃ perovskite for high efficiency light-assisted water treatment. Catalysis Science and Technology, 2020, 10, 1299-1310.	2.1	42
15	Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications. Topics in Current Chemistry Collections, 2020, , 107-162.	0.2	7
16	A Special Section on Nanostructured Catalysts for Environmental Remediation. Journal of Nanoscience and Nanotechnology, 2020, 20, 5859-5860.	0.9	1
17	Evaluation of photoassisted treatments for norfloxacin removal in water using mesoporous Fe2O3-TiO2 materials. Journal of Environmental Management, 2019, 238, 243-250.	3.8	35
18	Ti-substituted LaFeO3 perovskite as photoassisted CWPO catalyst for water treatment. Applied Catalysis B: Environmental, 2019, 248, 120-128.	10.8	66

#	Article	IF	CITATIONS
19	Heterogeneous photodegradation of Pyrimethanil and its commercial formulation with TiO2 immobilized on SiC foams. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368, 1-6.	2.0	35
20	Alveolar TiO2-Î ² -SiC photocatalytic composite foams with tunable properties for water treatment. Catalysis Today, 2019, 328, 235-242.	2.2	20
21	Photoactive ZnO Materials for Solar Light-Induced CuxO-ZnO Catalyst Preparation. Materials, 2018, 11, 2260.	1.3	15
22	Photocatalytic wet peroxide oxidation process at circumneutral pH using ilmenite as catalyst. Journal of Environmental Chemical Engineering, 2018, 6, 7312-7317.	3.3	8
23	Modified ilmenite as catalyst for CWPO-Photoassisted process under LED light. Chemical Engineering Journal, 2017, 318, 89-94.	6.6	31
24	Dechlorination and oxidative degradation of 4-chlorophenol with nanostructured iron-silver alginate beads. Journal of Environmental Chemical Engineering, 2017, 5, 838-842.	3.3	16
25	Sulfonamides photoassisted oxidation treatments catalyzed by ilmenite. Chemosphere, 2017, 180, 523-530.	4.2	29
26	Treatment of hospital wastewater through the CWPO-Photoassisted process catalyzed by ilmenite. Journal of Environmental Chemical Engineering, 2017, 5, 4337-4343.	3.3	35
27	UV-LED/ilmenite/persulfate for azo dye mineralization: The role of sulfate in the catalyst deactivation. Applied Catalysis B: Environmental, 2017, 219, 314-321.	10.8	59
28	An overview on the application of advanced oxidation processes for the removal of naphthenic acids from water. Critical Reviews in Environmental Science and Technology, 2017, 47, 1337-1370.	6.6	27
29	UV-LED assisted catalytic wet peroxide oxidation with a Fe(II)-Fe(III)/activated carbon catalyst. Applied Catalysis B: Environmental, 2016, 192, 350-356.	10.8	36
30	Application of intensified Fenton oxidation to the treatment of hospital wastewater: Kinetics, ecotoxicity and disinfection. Journal of Environmental Chemical Engineering, 2016, 4, 4107-4112.	3.3	45
31	Improving the Fenton process by visible LED irradiation. Environmental Science and Pollution Research, 2016, 23, 23449-23455.	2.7	15
32	llmenite (FeTiO 3) as low cost catalyst for advanced oxidation processes. Journal of Environmental Chemical Engineering, 2016, 4, 542-548.	3.3	72
33	Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview. Critical Reviews in Environmental Science and Technology, 2015, 45, 2611-2692.	6.6	191
34	Photocatalytic degradation of phenol and isoproturon: Effect of adding an activated carbon to titania catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 287, 8-18.	2.0	35
35	WO3–TiO2 based catalysts for the simulated solar radiation assisted photocatalytic ozonation of emerging contaminants in a municipal wastewater treatment plant effluent. Applied Catalysis B: Environmental, 2014, 154-155, 274-284.	10.8	87
36	Effect of water composition on the photocatalytic removal of pesticides with different TiO2 catalysts. Environmental Science and Pollution Research, 2014, 21, 12233-12240.	2.7	25