Alexandra Simonovicova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5541303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diversity of soil microscopic filamentous fungi in Dystric Cambisol at the Banská Åtiavnica – Åobov (Slovakia) locality after application of remediation measures. Biologia (Poland), 2021, 76, 2123-2131.	1.5	5
2	Aspergillus niger Environmental Isolates and Their Specific Diversity Through Metabolite Profiling. Frontiers in Microbiology, 2021, 12, 658010.	3.5	10
3	Experimental Treatment of Hazardous Ash Waste by Microbial Consortium Aspergillus niger and Chlorella sp.: Decrease of the Ni Content and Identification of Adsorption Sites by Fourier-Transform Infrared Spectroscopy. Frontiers in Microbiology, 2021, 12, 792987.	3.5	5
4	Differences in metabolites production using the Biolog FF Microplateâ,,¢ system with an emphasis on some organic acids of Aspergillus niger wild type strains. Biologia (Poland), 2020, 75, 1537-1546.	1.5	12
5	Occurrence and diversity of cultivable autochthonous microscopic fungi in substrates of old environmental loads from mining activities in Slovakia. Ecotoxicology and Environmental Safety, 2019, 172, 194-202.	6.0	17
6	Soil Microbiota of Dystric Cambisol in the High Tatra Mountains (Slovakia) after Windthrow. Sustainability, 2019, 11, 6851.	3.2	4
7	Removal of aluminium from aqueous solution by four wild-type strains of Aspergillus niger. Bioprocess and Biosystems Engineering, 2019, 42, 291-296.	3.4	12
8	Study of the binding sites in the biomass of Aspergillus niger wild-type strains by FTIR spectroscopy. Chemical Papers, 2018, 72, 2283-2288.	2.2	16
9	Arsenic ashy soils in Central Slovakia and their chemical and microbiological properties. Monatshefte Für Chemie, 2017, 148, 593-600.	1.8	2
10	Responses of Aspergillus niger to selected environmental factors. Nova Biotechnologica Et Chimica, 2017, 16, 92-98.	0.1	4
11	Autochthonous Microbiota in Arsenic-Bearing Technosols from Zemianske Kostoľany (Slovakia) and Its Potential for Bioleaching and Biovolatilization of Arsenic. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	17
12	Influence Of Fine-Grained Montmorillonite On Microfungal Pellets Growth In Aqueous Suspensions. Nova Biotechnologica Et Chimica, 2015, 14, 38-44.	0.1	2
13	The occurrence of heat-resistant species of Trichophaea abundans in different types of soil in Slovakia and Czech Republic. Biologia (Poland), 2014, 69, 168-172.	1.5	12
14	Disclosing a crypt: Microbial diversity and degradation activity of the microflora isolated from funeral clothes of Cardinal Peter Pázmány. Microbiological Research, 2013, 168, 289-299.	5.3	48
15	Influence of the Environment on the Morphological and Biochemical Characteristics of Different Aspergillus niger Wild Type Strains. Indian Journal of Microbiology, 2013, 53, 187-193.	2.7	11
16	Analysis and comparison of the microflora isolated from fresco surface and from surrounding air environment through molecular and biodegradative assays. World Journal of Microbiology and Biotechnology, 2012, 28, 2015-2027.	3.6	44
17	Sorption, desorption, and degradation of (4-chloro-2-methylphenoxy)acetic acid in representative soils of the Danubian Lowland, Slovakia. Chemosphere, 2012, 87, 437-444.	8.2	49
18	A multiphasic approach for investigation of the microbial diversity and its biodegradative abilities in historical paper and parchment documents. International Biodeterioration and Biodegradation, 2012, 70, 117-125.	3.9	94

#	Article	IF	CITATIONS
19	Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing. Canadian Journal of Microbiology, 2009, 55, 277-287.	1.7	75
20	Bio-accumulation of As(III) and As(V) species from water samples by two strains ofAspergillus nigerusing hydride generation atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2009, 89, 569-581.	3.3	10
21	Biovolatilization of Arsenic by Different Fungal Strains. Water, Air, and Soil Pollution, 2007, 186, 337-342.	2.4	60
22	Production of Catalases by Aspergillus niger Isolates as a Response to Pollutant Stress by Heavy Metals. Current Microbiology, 2005, 50, 175-179.	2.2	21
23	Airborne and soil microfungi as contaminants of stone in a hypogean cemetery. International Biodeterioration and Biodegradation, 2004, 54, 7-11.	3.9	26
24	The posibility of soil micromycetes produced the abscisic acid. Acta Physiologiae Plantarum, 2000, 22, 179-184.	2.1	3