
Sandra Maaß

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5541196/publications.pdf Version: 2024-02-01

ςανήρα ΜαάδΫ

#	Article	IF	CITATIONS
1	The global proteome and ubiquitinome of bacterial and viral co-infected bronchial epithelial cells. Journal of Proteomics, 2022, 250, 104387.	2.4	1
2	AtpÎ [~] is an inhibitor of F0F1 ATP synthase to arrest ATP hydrolysis during low-energy conditions in cyanobacteria. Current Biology, 2022, 32, 136-148.e5.	3.9	22
3	Streptococcus pneumoniae and Influenza A Virus Co-Infection Induces Altered Polyubiquitination in A549 Cells. Frontiers in Cellular and Infection Microbiology, 2022, 12, 817532.	3.9	2
4	Migration of <i>Acanthamoeba</i> through <i>Legionella</i> biofilms is regulated by the bacterial <scp>Lqs‣vbR</scp> network, effector proteins and the flagellum. Environmental Microbiology, 2022,	3.8	4
5	Expression of the Cyanobacterial F _o F ₁ ATP Synthase Regulator Atpl^ Depends on Small DNA-Binding Proteins and Differential mRNA Stability. Microbiology Spectrum, 2022, 10, e0256221.	3.0	5
6	Connections between Exoproteome Heterogeneity and Virulence in the Oral Pathogen Aggregatibacter actinomycetemcomitans. MSystems, 2022, 7, .	3.8	5
7	Metabolic Labeling of Clostridioides difficile. Methods in Molecular Biology, 2021, 2228, 271-282.	0.9	1
8	Reprograming of sRNA target specificity by the leader peptide peTrpL in response to antibiotic exposure. Nucleic Acids Research, 2021, 49, 2894-2915.	14.5	9
9	Proteomic Adaptation of Clostridioides difficile to Treatment with the Antimicrobial Peptide Nisin. Cells, 2021, 10, 372.	4.1	7
10	A conserved, buried cysteine near the P-site is accessible to cysteine modifications and increases ROS stability in the P-type plasma membrane H+-ATPase. Biochemical Journal, 2021, 478, 619-632.	3.7	9
11	Proteomic Charting of Imipenem Adaptive Responses in a Highly Carbapenem Resistant Clinical Enterobacter roggenkampii Isolate. Antibiotics, 2021, 10, 501.	3.7	1
12	The Rhinobiome of Exacerbated Wheezers and Asthmatics: Insights From a German Pediatric Exacerbation Network. Frontiers in Allergy, 2021, 2, 667562.	2.8	7
13	A Small RNA Is Linking CRISPR–Cas and Zinc Transport. Frontiers in Molecular Biosciences, 2021, 8, 640440.	3.5	4
14	Bottomâ€up and topâ€down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frameâ€encoded peptides. Proteomics, 2021, 21, e2100008.	2.2	32
15	CdrS Is a Global Transcriptional Regulator Influencing Cell Division in Haloferax volcanii. MBio, 2021, 12, e0141621.	4.1	14
16	Another layer of complexity in <i>Staphylococcus aureus</i> methionine biosynthesis control: unusual RNaseÂIII-driven T-box riboswitch cleavage determines <i>met</i> operon mRNA stability and decay. Nucleic Acids Research, 2021, 49, 2192-2212.	14.5	7
17	Redirected Stress Responses in a Genome-Minimized â€~midi <i>Bacillus</i> ' Strain with Enhanced Capacity for Protein Secretion. MSystems, 2021, 6, e0065521.	3.8	5
18	A Lactococcal Phage Protein Promotes Viral Propagation and Alters the Host Proteomic Response During Infection. Viruses, 2020, 12, 797.	3.3	4

Sandra Maaß

#	Article	IF	CITATIONS
19	Exoproteomic profiling uncovers critical determinants for virulence of livestock-associated and human-originated <i>Staphylococcus aureus</i> ST398 strains. Virulence, 2020, 11, 947-963.	4.4	12
20	Optimized Proteomics Workflow for the Detection of Small Proteins. Journal of Proteome Research, 2020, 19, 4004-4018.	3.7	28
21	A global data-driven census of <i>Salmonella</i> small proteins and their potential functions in bacterial virulence. MicroLife, 2020, 1, .	2.1	34
22	Proteomic Adaptation of Streptococcus pneumoniae to the Antimicrobial Peptide Human Beta Defensin 3 (hBD3) in Comparison to Other Cell Surface Stresses. Microorganisms, 2020, 8, 1697.	3.6	2
23	The Leader Peptide peTrpL Forms Antibiotic-Containing Ribonucleoprotein Complexes for Posttranscriptional Regulation of Multiresistance Genes. MBio, 2020, 11, .	4.1	10
24	Membrane Modulation of Super-Secreting "midiBacillus―Expressing the Major Staphylococcus aureus Antigen – A Mass-Spectrometry-Based Absolute Quantification Approach. Frontiers in Bioengineering and Biotechnology, 2020, 8, 143.	4.1	8
25	Comprehensive Spectral Library from the Pathogenic Bacterium <i>Streptococcus pneumoniae</i> with Focus on Phosphoproteins. Journal of Proteome Research, 2020, 19, 1435-1446.	3.7	4
26	Proteomic Adaptation of Streptococcus pneumoniae to the Human Antimicrobial Peptide LL-37. Microorganisms, 2020, 8, 413.	3.6	11
27	Peptide-based quorum sensing systems in <i>Paenibacillus polymyxa</i> . Life Science Alliance, 2020, 3, e202000847.	2.8	11
28	Toward the Quantitative Characterization of Arginine Phosphorylations in <i>Staphylococcus aureus</i> . Journal of Proteome Research, 2019, 18, 265-279.	3.7	10
29	Ariadne's Thread in the Analytical Labyrinth of Membrane Proteins: Integration of Targeted and Shotgun Proteomics for Global Absolute Quantification of Membrane Proteins. Analytical Chemistry, 2019, 91, 11972-11980.	6.5	7
30	Investigating Lactococcus lactis MG1363 Response to Phage p2 Infection at the Proteome Level. Molecular and Cellular Proteomics, 2019, 18, 704-714.	3.8	12
31	Subcellular Protein Fractionation in Legionella pneumophila and Preparation of the Derived Sub-proteomes for Analysis by Mass Spectrometry. Methods in Molecular Biology, 2019, 1921, 445-464.	0.9	Ο
32	Virulence Factors Produced by Staphylococcus aureus Biofilms Have a Moonlighting Function Contributing to Biofilm Integrity. Molecular and Cellular Proteomics, 2019, 18, 1036-1053.	3.8	82
33	The Disulfide Stress Response and Protein S-thioallylation Caused by Allicin and Diallyl Polysulfanes in Bacillus subtilis as Revealed by Transcriptomics and Proteomics. Antioxidants, 2019, 8, 605.	5.1	23
34	Proteomic Investigation Uncovers Potential Targets and Target Sites of Pneumococcal Serine-Threonine Kinase StkP and Phosphatase PhpP. Frontiers in Microbiology, 2019, 10, 3101.	3.5	28
35	Proteomic response of Streptococcus pneumoniae to iron limitation. International Journal of Medical Microbiology, 2018, 308, 713-721.	3.6	26
36	Spectral Library Based Analysis of Arginine Phosphorylations in Staphylococcus aureus. Molecular and Cellular Proteomics, 2018, 17, 335-348.	3.8	41

Sandra Maaß

#	Article	IF	CITATIONS
37	Proteomic Signatures of Clostridium difficile Stressed with Metronidazole, Vancomycin, or Fidaxomicin. Cells, 2018, 7, 213.	4.1	14
38	Iron Regulation in Clostridioides difficile. Frontiers in Microbiology, 2018, 9, 3183.	3.5	49
39	Absolute Protein Quantification Using AQUA-Calibrated 2D-PAGE. Methods in Molecular Biology, 2018, 1841, 141-162.	0.9	3
40	Enrichment of Cell Surface-Associated Proteins in Gram-Positive Bacteria by Biotinylation or Trypsin Shaving for Mass Spectrometry Analysis. Methods in Molecular Biology, 2018, 1841, 35-43.	0.9	5
41	A Metabolic Labeling Strategy for Relative Protein Quantification in Clostridioides difficile. Frontiers in Microbiology, 2018, 9, 2371.	3.5	4
42	Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress. Scientific Reports, 2017, 7, 1195.	3.3	47
43	The glyceraldehyde-3-phosphate dehydrogenase GapDH of Corynebacterium diphtheriae is redox-controlled by protein S-mycothiolation under oxidative stress. Scientific Reports, 2017, 7, 5020.	3.3	24
44	The protein inventory of <i>Clostridium difficile</i> grown in complex and minimal medium. Proteomics - Clinical Applications, 2016, 10, 1068-1072.	1.6	36
45	Costs of life - Dynamics of the protein inventory of Staphylococcus aureus during anaerobiosis. Scientific Reports, 2016, 6, 28172.	3.3	38
46	Methods and applications of absolute protein quantification in microbial systems. Journal of Proteomics, 2016, 136, 222-233.	2.4	16
47	Genome-Wide Analysis of Phosphorylated PhoP Binding to Chromosomal DNA Reveals Several Novel Features of the PhoPR-Mediated Phosphate Limitation Response in Bacillus subtilis. Journal of Bacteriology, 2015, 197, 1492-1506.	2.2	23
48	Adaptation of <scp><i>B</i></scp> <i>acillus subtilis</i> carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multiâ€omics perspective. Environmental Microbiology, 2014, 16, 1898-1917.	3.8	83
49	Comprehensive Absolute Quantification of the Cytosolic Proteome of Bacillus subtilis by Data Independent, Parallel Fragmentation in Liquid Chromatography/Mass Spectrometry (LC/MSE). Molecular and Cellular Proteomics, 2014, 13, 1008-1019.	3.8	102
50	Highly Precise Quantification of Protein Molecules per Cell During Stress and Starvation Responses in Bacillus subtilis. Molecular and Cellular Proteomics, 2014, 13, 2260-2276.	3.8	44
51	The new horizon in 2D electrophoresis: New technology to increase resolution and sensitivity. Electrophoresis, 2013, 34, 1510-1518.	2.4	27
52	Efficient, Global-Scale Quantification of Absolute Protein Amounts by Integration of Targeted Mass Spectrometry and Two-Dimensional Gel-Based Proteomics. Analytical Chemistry, 2011, 83, 2677-2684.	6.5	110
53	A comprehensive analysis of Bordetella pertussis surface proteome and identification of new immunogenic proteins. Vaccine, 2011, 29, 3583-3595.	3.8	49